Human lung undergoes breathing-induced deformation in the form of inhalation and exhalation. Modeling the dynamics is numerically complicated by the lack of information on lung elastic behavior and fluid–structure interactions between air and the tissue. A mathematical method is developed to integrate deformation results from a deformable image registration (DIR) and physics-based modeling approaches in order to represent consistent volumetric lung dynamics. The computational fluid dynamics (CFD) simulation assumes the lung is a poro-elastic medium with spatially distributed elastic property. Simulation is performed on a 3D lung geometry reconstructed from four-dimensional computed tomography (4DCT) dataset of a human subject. The heterogeneous Young’s modulus (YM) is estimated from a linear elastic deformation model with the same lung geometry and 4D lung DIR. The deformation obtained from the CFD is then coupled with the displacement obtained from the 4D lung DIR by means of the Tikhonov regularization (TR) algorithm. The numerical results include 4DCT registration, CFD, and optimal displacement data which collectively provide consistent estimate of the volumetric lung dynamics. The fusion method is validated by comparing the optimal displacement with the results obtained from the 4DCT registration.

References

References
1.
Keall
,
P. J.
,
Mageras
,
G. S.
,
Balter
,
J. M.
,
Emery
,
R. S.
,
Forster
,
K. M.
,
Jiang
,
S. B.
,
Kapatoes
,
J. M.
,
Low
,
D. A.
,
Murphy
,
M. J.
, and
Murray
,
B. R.
,
2006
, “
The Management of Respiratory Motion in Radiation Oncology Report of AAPM Task Group 76
,”
Med. Phys.
,
33
(
10
), pp.
3874
3938
.
2.
Santhanam
,
A. P.
,
Min
,
Y.
,
Rolland
,
J. P.
,
Imielinska
,
C.
, and
Kupelian
,
P. A.
,
2011
, “
Four-Dimensional Computed Tomography Lung Registration Methods
,”
Lung Imaging and Computer Aided Diagnosis
,
A.
EI-Baz
and
J. S.
Suri
, eds.,
CRC Press
,
Boca Raton, FL
, pp.
85
108
.
3.
Plathow
,
C.
,
Ley
,
S.
,
Fink
,
C.
,
Puderbach
,
M.
,
Hosch
,
W.
,
Schmähl
,
A.
,
Debus
,
J.
, and
Kauczor
,
H.-U.
,
2004
, “
Analysis of Intrathoracic Tumor Mobility During Whole Breathing Cycle by Dynamic MRI
,”
Int. J. Radiat. Oncol.
,
59
(
4
), pp.
952
959
.
4.
Ilegbusi
,
O. J.
,
Seyfi
,
B.
, and
Salvin
,
R.
,
2013
, “
Patient-Specific Model of Lung Deformation Using Spatially Dependent Constitutive Parameters
,”
Math. Comput. Modell. Dyn.
,
20
(
6
), pp.
546
556
.
5.
Al-Mayah
,
A.
,
Moseley
,
J.
, and
Brock
,
K.
,
2008
, “
Contact Surface and Material Nonlinearity Modeling of Human Lungs
,”
Phys. Med. Biol.
,
53
(
1
), pp.
305
317
.
6.
Ilegbusi
,
O. J.
,
Li
,
Z.
,
Seyfi
,
B.
,
Min
,
Y.
,
Meeks
,
S.
,
Kupelian
,
P.
, and
Santhanam
,
A. P.
,
2012
, “
Modeling Airflow Using Subject-Specific 4DCT-Based Deformable Volumetric Lung Models
,”
J. Biomed. Imaging
,
2012
, pp.
4
14
.
7.
Seyfi
,
B.
,
Santhanam
,
A. P.
, and
Ilegbusi
,
O. J.
, “
Application of Fusion Algorithm to Human Lung Dynamics
,”
ASME
Paper No. IMECE2012-86407.
8.
Brock
,
K.
,
Sharpe
,
M.
,
Dawson
,
L.
,
Kim
,
S.
, and
Jaffray
,
D.
,
2005
, “
Accuracy of Finite Element Model-Based Multi-Organ Deformable Image Registration
,”
Med. Phys.
,
32
(
6
), pp.
1647
1695
.
9.
Werner
,
R.
,
Ehrhardt
,
J.
,
Schmidt
,
R.
, and
Handels
,
H.
, “
Modeling Respiratory Lung Motion: A Biophysical Approach Using Finite Element Methods
,”
Proc. SPIE
,
6916
, p.
69160N
.
10.
Eom
,
J.
,
Xu
,
X. G.
,
De
,
S.
, and
Shi
,
C.
,
2010
, “
Predictive Modeling of Lung Motion Over the Entire Respiratory Cycle Using Measured Pressure-Volume Data, 4DCT Images, and Finite-Element Analysis
,”
Med. Phys.
,
37
(
8
), pp.
4389
4423
.
11.
Chang
,
J. Y.
, “
Guidelines and Techniques for Image-Guided Radiotherapy for Non-Small Cell Lung Cancer
,”
Image-Guided Radiotherapy of Lung Cancer
,
J. D.
Cox
,
J. Y.
Chang
, and
R.
Komaki
, eds.,
CRC Press
,
Boca Raton, FL
, p.
25
.
12.
Tikhonov
,
A. N.
, and
Arsenin
,
V. Y.
,
1977
,
Solutions of Ill-Posed Problems
,
Winston, Halsted Press
,
Washington, NY
.
13.
Vaina
,
L. M.
,
Beardsley
,
S. A.
, and
Rushton
,
S. K.
,
2004
,
Optic Flow and Beyond
,
Springer
,
Dordrecht
.
14.
Min
,
Y.
,
Neylon
,
J.
,
Shah
,
A.
,
Meeks
,
S.
,
Lee
,
P.
,
Kupelian
,
P.
, and
Santhanam
,
A. P.
,
2014
, “
4D-CT Lung Registration Using Anatomy-Based Multi-Level Multi-Resolution Optical Flow Analysis and Thin-Plate Splines
,”
Int. J. Comput. Assisted Radiol. Surg.
,
9
(
5
), pp.
875
889
.
15.
Materialise
,
2013
, “Mimics® 13.1, Medical Image Segmentation for Engineering on AnatomyTM,” Materialise HQ, Leuven, Belgium, http://www.biomedical.materialise.com/mimics
16.
Materialise
,
2013
, “
3-matic® 5.01, 3-matic puts the ‘Engineering’ in Engineering on Anatomy™
,” Materialise HQ, Leuven, Belgium, http://biomedical.materialise.com/3-matic-0
17.
Zhang
,
H.
,
Zhang
,
X.
,
Ji
,
S.
,
Guo
,
Y.
,
Ledezma
,
G.
,
Elabbasi
,
N.
, and
deCougny
,
H.
,
2003
, “
Recent Development of Fluid–Structure Interaction Capabilities in the Adina System
,”
Comput. Struct.
,
81
(
8
), pp.
1071
1085
.
18.
Sobin
,
S.
,
Fung
,
Y.
, and
Tremer
,
H.
,
1988
, “
Collagen and Elastin Fibers in Human Pulmonary Alveolar Walls
,”
J. Appl. Physiol.
,
64
(
4
), pp.
1659
1675
.
19.
Toshima
,
M.
,
Ohtani
,
Y.
, and
Ohtani
,
O.
,
2004
, “
Three-Dimensional Architecture of Elastin and Collagen Fiber Networks in the Human and Rat Lung
,”
Arch. Histol. Cytol.
,
67
(
1
), pp.
31
40
.
20.
ADINA
,
2013
, “
ADINA 9.0: Automatic Dynamic Incremental Nonlinear Analysis
,” ADINA R&D Inc., Watertown, MA, http://www.adina.com
21.
Santhanam
,
A. P.
,
Min
,
Y.
,
Mudur
,
S. P.
,
Rastogi
,
A.
,
Ruddy
,
B. H.
,
Shah
,
A.
,
Divo
,
E.
,
Kassab
,
A.
,
Rolland
,
J. P.
, and
Kupelian
,
P.
,
2010
, “
An Inverse Hyper-Spherical Harmonics-Based Formulation for Reconstructing 3d Volumetric Lung Deformations
,”
C. R. Méc.
,
338
(
7
), pp.
461
473
.
22.
Villard
,
P.-F.
,
Beuve
,
M.
,
Shariat
,
B.
,
Baudet
,
V.
, and
Jaillet
,
F.
,
2005
, “
Simulation of Lung Behaviour With Finite Elements: Influence of Bio-Mechanical Parameters
,”
Third International Conference on Medical Information Visualisation–Biomedical Visualisation
(
MediVis 2005
),
London
, July 5–7, pp.
9
14
.
23.
Chhatkuli
,
S.
,
Koshizuka
,
S.
, and
Uesaka
,
M.
,
2009
, “
Dynamic Tracking of Lung Deformation During Breathing by Using Particle Method
,”
Model. Simul. Eng.
,
2009
, pp.
7
14
.
You do not currently have access to this content.