Osteoarthritis (OA) is a significant socio-economic concern, affecting millions of individuals each year. Degeneration of the meniscus of the knee is often associated with OA, yet the relationship between the two is not well understood. As a nearly avascular tissue, the meniscus must rely on diffusive transport for nutritional supply to cells. Therefore, quantifying structure–function relations for transport properties in meniscus fibrocartilage is an important task. The purpose of the present study was to determine how mechanical loading, tissue anisotropy, and tissue region affect glucose diffusion in meniscus fibrocartilage. A one-dimensional (1D) diffusion experiment was used to measure the diffusion coefficient of glucose in porcine meniscus tissues. Results show that glucose diffusion is strain-dependent, decreasing significantly with increased levels of compression. It was also determined that glucose diffusion in meniscus tissues is anisotropic, with the diffusion coefficient in the circumferential direction being significantly higher than that in the axial direction. Finally, the effect of tissue region was not statistically significant, comparing axial diffusion in the central and horn regions of the tissue. This study is important for better understanding the transport and nutrition-related mechanisms of meniscal degeneration and related OA in the knee.

References

References
1.
Makris
,
E. A.
,
Hadidi
,
P.
, and
Athanasiou
,
K. A.
,
2011
, “
The Knee Meniscus: Structure-Function, Pathophysiology, Current Repair Techniques, and Prospects for Regeneration
,”
Biomaterials
,
32
(
30
), pp.
7411
7431
.
2.
Andriacchi
,
T. P.
,
Mundermann
,
A.
,
Smith
,
R. L.
,
Alexander
,
E. J.
,
Dyrby
,
C. O.
, and
Koo
,
S.
,
2004
, “
A Framework for the In Vivo Pathomechanics of Osteoarthritis at the Knee
,”
Ann. Biomed. Eng.
,
32
(
3
), pp.
447
457
.
3.
Sweigart
,
M. A.
, and
Athanasiou
,
K. A.
,
2005
, “
Biomechanical Characteristics of the Normal Medial and Lateral Porcine Knee Menisci
,”
Proc. Inst. Mech. Eng., Part H
,
219
(
1
), pp.
53
62
.
4.
Maroudas
,
A.
,
1975
, “
Biophysical Chemistry of Cartilaginous Tissues With Special Reference to Solute and Fluid Transport
,”
Biorheology
,
12
(
3–4
), pp.
233
248
.
5.
Urban
,
J. P.
,
Holm
,
S.
,
Maroudas
,
A.
, and
Nachemson
,
A.
,
1982
, “
Nutrition of the Intervertebral Disc: Effect of Fluid Flow on Solute Transport
,”
Clin. Orthop. Relat. Res.
,
170
, pp.
296
302
.
6.
Urban
,
J. P.
,
Holm
,
S.
, and
Maroudas
,
A.
,
1978
, “
Diffusion of Small Solutes Into the Intervertebral Disc: An In Vivo Study
,”
Biorheology
,
15
(
3–4
), pp.
203
221
.
7.
Fithian
,
D. C.
,
Kelly
,
M. A.
, and
Mow
,
V. C.
,
1990
, “
Material Properties and Structure-Function Relationships in the Menisci
,”
Clin. Orthop. Relat. Res.
,
252
, pp.
19
31
.
8.
Proctor
,
C. S.
,
Schmidt
,
M. B.
,
Whipple
,
R. R.
,
Kelly
,
M. A.
, and
Mow
, V
. C.
,
1989
, “
Material Properties of the Normal Medial Bovine Meniscus
,”
J. Orthop. Res.
,
7
(
6
), pp.
771
782
.
9.
Nguyen
,
A. M.
, and
Levenston
,
M. E.
,
2012
, “
Comparison of Osmotic Swelling Influences on Meniscal Fibrocartilage and Articular Cartilage Tissue Mechanics in Compression and Shear
,”
J. Orthop. Res.
,
30
(
1
), pp.
95
102
.
10.
Sweigart
,
M. A.
,
Zhu
,
C. F.
,
Burt
,
D. M.
,
DeHoll
,
P. D.
,
Agrawal
,
C. M.
,
Clanton
,
T. O.
, and
Athanasiou
,
K. A.
,
2004
, “
Intraspecies and Interspecies Comparison of the Compressive Properties of the Medial Meniscus
,”
Ann. Biomed. Eng.
,
32
(
11
), pp.
1569
1579
.
11.
Gabrion
,
A.
,
Aimedieu
,
P.
,
Laya
,
Z.
,
Havet
,
E.
,
Mertl
,
P.
,
Grebe
,
R.
, and
Laude
,
M.
,
2005
, “
Relationship Between Ultrastructure and Biomechanical Properties of the Knee Meniscus
,”
Surg. Radiol. Anat.
,
27
(
6
), pp.
507
510
.
12.
Tissakht
,
M.
, and
Ahmed
,
A. M.
,
1995
, “
Tensile Stress-Strain Characteristics of the Human Meniscal Material
,”
J. Biomech.
,
28
(
4
), pp.
411
422
.
13.
Chia
,
H. N.
, and
Hull
,
M. L.
,
2008
, “
Compressive Moduli of the Human Medial Meniscus in the Axial and Radial Directions at Equilibrium and at a Physiological Strain Rate
,”
J. Orthop. Res.
,
26
(
7
), pp.
951
956
.
14.
Leslie
,
B. W.
,
Gardner
,
D. L.
,
McGeough
,
J. A.
, and
Moran
,
R. S.
,
2000
, “
Anisotropic Response of the Human Knee Joint Meniscus to Unconfined Compression
,”
Proc. Inst. Mech. Eng.
, Part H,
214
(
6
), pp.
631
635
.
15.
Skaggs
,
D. L.
,
Warden
,
W. H.
, and
Mow
,
V. C.
,
1994
, “
Radial Tie Fibers Influence the Tensile Properties of the Bovine Medial Meniscus
,”
J. Orthop. Res.
,
12
(
2
), pp.
176
185
.
16.
Spilker
,
R. L.
,
Donzelli
,
P. S.
, and
Mow
,
V. C.
,
1992
, “
A Transversely Isotropic Biphasic Finite Element Model of the Meniscus
,”
J. Biomech.
,
25
(
9
), pp.
1027
1045
.
17.
Sanchez-Adams
,
J.
,
Willard
,
V. P.
, and
Athanasiou
,
K. A.
,
2011
, “
Regional Variation in the Mechanical Role of Knee Meniscus Glycosaminoglycans
,”
J. Appl. Physiol.
,
111
(
6
), pp.
1590
1596
.
18.
Danso
,
E. K.
,
Honkanen
,
J. T.
,
Saarakkala
,
S.
, and
Korhonen
,
R. K.
,
2014
, “
Comparison of Nonlinear Mechanical Properties of Bovine Articular Cartilage and Meniscus
,”
J. Biomech.
,
47
(
1
), pp.
200
206
.
19.
Bursac
,
P.
,
Arnoczky
,
S.
, and
York
,
A.
,
2009
, “
Dynamic Compressive Behavior of Human Meniscus Correlates With Its Extra-Cellular Matrix Composition
,”
Biorheology
,
46
(
3
), pp.
227
237
.
20.
LeRoux
,
M. A.
, and
Setton
,
L. A.
,
2002
, “
Experimental and Biphasic FEM Determinations of the Material Properties and Hydraulic Permeability of the Meniscus in Tension
,”
ASME J. Biomech. Eng.
,
124
(
3
), pp.
315
321
.
21.
Danzig
,
L. A.
,
Hargens
,
A. R.
,
Gershuni
,
D. H.
,
Skyhar
,
M. J.
,
Sfakianos
,
P. N.
, and
Akeson
,
W. H.
,
1987
, “
Increased Transsynovial Transport With Continuous Passive Motion
,”
J. Orthop. Res.
,
5
(
3
), pp.
409
413
.
22.
Travascio
,
F.
,
Zhao
,
W.
, and
Gu
,
W. Y.
,
2009
, “
Characterization of Anisotropic Diffusion Tensor of Solute in Tissue by Video-FRAP Imaging Technique
,”
Ann. Biomed. Eng.
,
37
(
4
), pp.
813
823
.
23.
Jackson
,
A. R.
,
Yuan
,
T. Y.
,
Huang
,
C. Y.
,
Travascio
,
F.
, and
Gu
,
W. Y.
,
2008
, “
Effect of Compression and Anisotropy on the Diffusion of Glucose in Annulus Fibrosus
,”
Spine
,
33
(
1
), pp.
1
7
.
24.
Jackson
,
A. R.
,
Yuan
,
T. Y.
,
Huang
,
C. Y.
,
Brown
,
M. D.
, and
Gu
,
W. Y.
,
2012
, “
Nutrient Transport in Human Annulus Fibrosus is Affected by Compressive Strain and Anisotropy
,”
Ann. Biomed. Eng.
,
40
(
12
), pp.
2551
2558
.
25.
Yuan
,
T. Y.
,
Jackson
,
A. R.
,
Huang
,
C. Y.
, and
Gu
,
W. Y.
,
2009
, “
Strain-Dependent Oxygen Diffusivity in Bovine Annulus Fibrosus
,”
ASME J. Biomech. Eng.
,
131
(
7
), p.
074503
.
26.
Maroudas
,
A.
,
Stockwell
,
R. A.
,
Nachemson
,
A.
, and
Urban
,
J.
,
1975
, “
Factors Involved in the Nutrition of the Human Lumbar Intervertebral Disc: Cellularity and Diffusion of Glucose In Vitro
,”
J. Anat.
,
120
(
1
), pp.
113
130
.
27.
Maroudas
,
A.
,
Bullough
,
P.
,
Swanson
,
S. A.
, and
Freeman
,
M. A.
,
1968
, “
The Permeability of Articular Cartilage
,”
J. Bone Jt. Surg., Br. Vol.
,
50
(
1
), pp.
166
177
.
28.
Martin Seitz
,
A.
,
Galbusera
,
F.
,
Krais
,
C.
,
Ignatius
,
A.
, and
Durselen
,
L.
,
2013
, “
Stress-Relaxation Response of Human Menisci Under Confined Compression Conditions
,”
J. Mech. Behav. Biomed. Mater.
,
26
, pp.
68
80
.
29.
Quinn
,
T. M.
,
Kocian
,
P.
, and
Meister
,
J. J.
,
2000
, “
Static Compression is Associated With Decreased Diffusivity of Dextrans in Cartilage Explants
,”
Arch. Biochem. Biophys.
,
384
(
2
), pp.
327
334
.
30.
Quinn
,
T. M.
,
Morel
,
V.
, and
Meister
,
J. J.
,
2001
, “
Static Compression of Articular Cartilage Can Reduce Solute Diffusivity and Partitioning: Implications for the Chondrocyte Biological Response
,”
J. Biomech.
,
34
(
11
), pp.
1463
1469
.
31.
Eckstein
,
F.
,
Lemberger
,
B.
,
Stammberger
,
T.
,
Englmeier
,
K. H.
, and
Reiser
,
M.
,
2000
, “
Patellar Cartilage Deformation In Vivo After Static Versus Dynamic Loading
,”
J. Biomech.
,
33
(
7
), pp.
819
825
.
32.
Yang
,
N. H.
,
Canavan
,
P. K.
,
Nayeb-Hashemi
,
H.
,
Najafi
,
B.
, and
Vaziri
,
A.
,
2010
, “
Protocol for Constructing Subject-Specific Biomechanical Models of Knee Joint
,”
Comput. Methods Biomech. Biomed. Eng.
,
13
(
5
), pp.
589
603
.
33.
Gu
,
W. Y.
,
Lewis
,
B.
,
Lai
,
W. M.
,
Ratcliffe
,
A.
, and
Mow
,
V. C.
,
1996
, “
A Technique for Measuring Volume and True Density of the Solid Matrix of Cartilaginous Tissues
,”
ASME Adv. Bioeng.
,
33
, pp.
89
90
.
34.
Gu
,
W. Y.
,
Lewis
,
B.
,
Saed-Nejad
,
F.
,
Lai
,
W. M.
, and
Ratcliffe
,
A.
,
1997
, “
Hydration and True Density of Normal and PG-Depleted Bovine Articular Cartilage
,”
Trans. Orthop. Res. Soc.
,
22
(
2
), p.
826
.
35.
Lai
,
W. M.
,
Hou
,
J. S.
, and
Mow
,
V. C.
,
1991
, “
A Triphasic Theory for the Swelling and Deformation Behaviors of Articular Cartilage
,”
ASME J. Biomech. Eng.
,
113
(
3
), pp.
245
258
.
36.
Malda
,
J.
,
Rouwkema
,
J.
,
Martens
,
D. E.
,
Le Comte
,
E. P.
,
Kooy
,
F. K.
,
Tramper
,
J.
,
van Blitterswijk
,
C. A.
, and
Riesle
,
J.
,
2004
, “
Oxygen Gradients in Tissue-Engineered PEGT/PBT Cartilaginous Constructs: Measurement and Modeling
,”
Biotechnol. Bioeng.
,
86
(
1
), pp.
9
18
.
37.
Hayat
,
M. A.
,
1982
,
Fixation for Electron Microscope
,
Academic Press
,
New York
.
38.
Longsworth
,
L. G.
,
1953
, “
Diffusion Measurements, at 25 °C, of Aqueous Solutions of Amino Acids, Peptides, and Sugars
,”
J. Am. Chem. Soc.
,
75
(
22
), pp.
5705
5709
.
39.
Burstein
,
D.
,
Gray
,
M. L.
,
Hartman
,
A. L.
,
Gipe
,
R.
, and
Foy
,
B. D.
,
1993
, “
Diffusion of Small Solutes in Cartilage as Measured by Nuclear Magnetic Resonance (NMR) Spectroscopy and Imaging
,”
J. Orthop. Res.
,
11
(
4
), pp.
465
478
.
40.
Allhands
,
R. V.
,
Torzilli
,
P. A.
, and
Kallfelz
,
F. A.
,
1984
, “
Measurement of Diffusion of Uncharged Molecules in Articular Cartilage
,”
Cornell Vet.
,
74
(
2
), pp.
111
123
.
41.
Torzilli
,
P. A.
,
Grande
,
D. A.
, and
Arduino
,
J. M.
,
1998
, “
Diffusive Properties of Immature Articular Cartilage
,”
J. Biomed. Mater. Res.
,
40
(
1
), pp.
132
138
.
42.
Maroudas
,
A.
,
1968
, “
Physicochemical Properties of Cartilage in the Light of Ion Exchange Theory
,”
Biophys. J.
,
8
(
5
), pp.
575
595
.
43.
Torzilli
,
P. A.
,
Arduino
,
J. M.
,
Gregory
,
J. D.
, and
Bansal
,
M.
,
1997
, “
Effect of Proteoglycan Removal on Solute Mobility in Articular Cartilage
,”
J. Biomech.
,
30
(
9
), pp.
895
902
.
44.
Maroudas
,
A.
,
1970
, “
Distribution and Diffusion of Solutes in Articular Cartilage
,”
Biophys. J.
,
10
(
5
), pp.
365
379
.
45.
Torzilli
,
P. A.
,
Adams
,
T. C.
, and
Mis
,
R. J.
,
1987
, “
Transient Solute Diffusion in Articular Cartilage
,”
J. Biomech.
,
20
(
2
), pp.
203
214
.
46.
Travascio
,
F.
,
Jackson
,
A. R.
,
Brown
,
M. D.
, and
Gu
,
W. Y.
,
2009
, “
Relationship Between Solute Transport Properties and Tissue Morphology in Human Annulus Fibrosus
,”
J. Orthop. Res.
,
27
(
12
), pp.
1625
1630
.
47.
Travascio
,
F.
, and
Gu
,
W. Y.
,
2007
, “
Anisotropic Diffusive Transport in Annulus Fibrosus: Experimental Determination of the Diffusion Tensor by FRAP Technique
,”
Ann. Biomed. Eng.
,
35
(
10
), pp.
1739
1748
.
48.
Fetter
,
N. L.
,
Leddy
,
H. A.
,
Guilak
,
F.
, and
Nunley
,
J. A.
,
2006
, “
Composition and Transport Properties of Human Ankle and Knee Cartilage
,”
J. Orthop. Res.
,
24
(
2
), pp.
211
219
.
49.
Shi
,
C.
,
Wright
,
G. J.
,
Ex-Lubeskie
,
C. L.
,
Bradshaw
,
A. D.
, and
Yao
,
H.
,
2013
, “
Relationship Between Anisotropic Diffusion Properties and Tissue Morphology in Porcine TMJ Disc
,”
Osteoarthritis Cartilage
,
21
(
4
), pp.
625
633
.
50.
Ngwa
,
W.
,
Geier
,
O.
,
Stallmach
,
F.
,
Naji
,
L.
,
Schiller
,
J.
, and
Arnold
,
K.
,
2002
, “
Cation Diffusion in Cartilage Measured by Pulsed Field Gradient NMR
,”
Eur. Biophys. J.
,
31
(
1
), pp.
73
80
.
51.
Gu
,
W. Y.
,
Yao
,
H.
,
Vega
,
A. L.
, and
Flagler
,
D.
,
2004
, “
Diffusivity of Ions in Agarose Gels and Intervertebral Disc: Effect of Porosity
,”
Ann. Biomed. Eng.
,
32
(
12
), pp.
1710
1717
.
52.
Kuo
,
J.
,
Wright
,
G. J.
,
Bach
,
D. E.
,
Slate
,
E. H.
, and
Yao
,
H.
,
2011
, “
Effect of Mechanical Loading on Electrical Conductivity in Porcine TMJ Discs
,”
J. Dent. Res.
,
90
(
10
), pp.
1216
1220
.
53.
Jackson
,
A. R.
,
Yao
,
H.
,
Brown
,
M. D.
, and
Gu
,
W. Y.
,
2006
, “
Anisotropic Ion Diffusivity in Intervertebral Disc: An Electrical Conductivity Approach
,”
Spine
,
31
(
24
), pp.
2783
2789
.
54.
Mackie
,
J. S.
, and
Meares
,
P.
,
1955
, “
The Diffusion of Electrolytes in a Cation-Exchange Resin Membrane. 1. Theoretical
,”
Proc. R. Soc. London, Ser. A
,
232
(
1191
), pp.
498
509
.
55.
Evans
,
R. C.
, and
Quinn
,
T. M.
,
2005
, “
Solute Diffusivity Correlates With Mechanical Properties and Matrix Density of Compressed Articular Cartilage
,”
Arch. Biochem. Biophys.
,
442
(
1
), pp.
1
10
.
56.
Arkill
,
K. P.
, and
Winlove
,
C. P.
,
2008
, “
Solute Transport in the Deep and Calcified Zones of Articular Cartilage
,”
Osteoarthritis Cartilage
,
16
(
6
), pp.
708
714
.
57.
Nimer
,
E.
,
Schneiderman
,
R.
, and
Maroudas
,
A.
,
2003
, “
Diffusion and Partition of Solutes in Cartilage Under Static Load
,”
Biophys. Chem.
,
106
(
2
), pp.
125
146
.
58.
Leddy
,
H. A.
,
Haider
,
M. A.
, and
Guilak
,
F.
,
2006
, “
Diffusional Anisotropy in Collagenous Tissues: Fluorescence Imaging of Continuous Point Photobleaching
,”
Biophys. J.
,
91
(
1
), pp.
311
316
.
59.
de Visser
,
S. K.
,
Crawford
,
R. W.
, and
Pope
,
J. M.
,
2008
, “
Structural Adaptations in Compressed Articular Cartilage Measured by Diffusion Tensor Imaging
,”
Osteoarthritis Cartilage
,
16
(
1
), pp.
83
89
.
60.
Meder
,
R.
,
de Visser
,
S. K.
,
Bowden
,
J. C.
,
Bostrom
,
T.
, and
Pope
,
J. M.
,
2006
, “
Diffusion Tensor Imaging of Articular Cartilage as a Measure of Tissue Microstructure
,”
Osteoarthritis Cartilage
,
14
(
9
), pp.
875
881
.
61.
Filidoro
,
L.
,
Dietrich
,
O.
,
Weber
,
J.
,
Rauch
,
E.
,
Oerther
,
T.
,
Wick
,
M.
,
Reiser
,
M. F.
, and
Glaser
,
C.
,
2005
, “
High-Resolution Diffusion Tensor Imaging of Human Patellar Cartilage: Feasibility and Preliminary Findings
,”
Magn. Reson. Med.
,
53
(
5
), pp.
993
998
.
62.
Hsu
,
E. W.
, and
Setton
,
L. A.
,
1999
, “
Diffusion Tensor Microscopy of the Intervertebral Disc Anulus Fibrosus
,”
Magn. Reson. Med.
,
41
(
5
), pp.
992
999
.
63.
Stylianopoulos
,
T.
,
Diop-Frimpong
,
B.
,
Munn
,
L. L.
, and
Jain
,
R. K.
,
2010
, “
Diffusion Anisotropy in Collagen Gels and Tumors: The Effect of Fiber Network Orientation
,”
Biophys. J.
,
99
(
10
), pp.
3119
3128
.
64.
Jackson
,
A. R.
,
Travascio
,
F.
, and
Gu
,
W. Y.
,
2009
, “
Effect of Mechanical Loading on Electrical Conductivity in Human Intervertebral Disk
,”
ASME J. Biomech. Eng.
,
131
(
5
), p.
054505
.
65.
Iatridis
,
J. C.
, and
ap Gwynn
,
I.
,
2004
, “
Mechanisms for Mechanical Damage in the Intervertebral Disc Annulus Fibrosus
,”
J. Biomech.
,
37
(
8
), pp.
1165
1175
.
66.
ap Gwynn
,
I.
,
Wade
,
S.
,
Ito
,
K.
, and
Richards
,
R. G.
,
2002
, “
Novel Aspects to the Structure of Rabbit Articular Cartilage
,”
Eur. Cells Mater.
,
4
, pp.
18
29
.
67.
McDevitt
,
C. A.
, and
Webber
,
R. J.
,
1990
, “
The Ultrastructure and Biochemistry of Meniscal Cartilage
,”
Clin. Orthop. Relat. Res.
,
252
, pp.
8
18
.
68.
Joshi
,
M. D.
,
Suh
,
J. K.
,
Marui
,
T.
, and
Woo
,
S. L.
,
1995
, “
Interspecies Variation of Compressive Biomechanical Properties of the Meniscus
,”
J. Biomed. Mater. Res.
,
29
(
7
), pp.
823
828
.
69.
Chu
,
C. R.
,
Szczodry
,
M.
, and
Bruno
,
S.
,
2010
, “
Animal Models for Cartilage Regeneration and Repair
,”
Tissue Eng. Part B Rev.
,
16
(
1
), pp.
105
115
.
You do not currently have access to this content.