Assessing the anatomical correlation of atherosclerosis with biomechanical localizing factors is hindered by spatial autocorrelation (SA), wherein neighboring arterial regions tend to have similar properties rather than being independent, and by the use of aggregated data, which artificially inflates correlation coefficients. Resampling data at lower resolution or reducing degrees-of-freedom in significance tests negated effects of SA but only in artificial situations where it occurred at a single length scale. Using Fourier or wavelet transforms to generate autocorrelation-preserving surrogate datasets, and thus to compute the null distribution, avoided this problem. Bootstrap methods additionally circumvented the errors caused by aggregating data. The bootstrap technique showed that wall shear stress (WSS) was significantly correlated with atherosclerotic lesion frequency and endothelial nuclear elongation, but not with the permeability of the arterial wall to albumin, in immature rabbits.

References

References
1.
Caro
,
C. G.
,
Fitz-Gerald
,
J. M.
, and
Schroter
,
R. C.
,
1971
, “
Atheroma and Arterial Wall Shear Observation, Correlation and Proposal of a Shear Dependent Mass Transfer Mechanism for Atherogenesis
,”
Proc. R. Soc. London B
,
177
(
1046
), pp.
109
159
.
2.
Ku
,
D. N.
,
Giddens
,
D. P.
,
Zarins
,
C. K.
, and
Glagov
,
S.
,
1985
, “
Pulsatile Flow and Atherosclerosis in the Human Carotid Bifurcation. Positive Correlation Between Plaque Location and Low Oscillating Shear Stress
,”
Arteriosclerosis
,
5
(
3
), pp.
293
302
.
3.
Peiffer
,
V.
,
Sherwin
,
S. J.
, and
Weinberg
,
P. D.
,
2013
, “
Does Low and Oscillatory Wall Shear Stress Correlate Spatially With Early Atherosclerosis? A Systematic Review
,”
Cardiovasc. Res.
,
99
(
2
), pp.
242
250
.
4.
Lennon
,
J. L.
,
2000
, “
Red-Shifts and Red Herrings in Geographical Ecology
,”
Ecography
,
23
(
1
), pp.
101
113
.
5.
Fortin
,
M. J.
, and
Payette
,
S.
,
2002
, “
How to Test the Significance of the Relation Between Spatially Autocorrelated Data at the Landscape Scale: A Case Study Using Fire and Forest Maps
,”
Ecoscience
,
9
(
2
), pp.
213
218
.
6.
Legendre
,
P.
, and
Legendre
,
L.
,
1998
,
Numerical Ecology
,
2nd ed.
,
Elsevier Science BV
,
Amsterdam, The Netherlands
.
7.
Clifford
,
P.
,
Richardson
,
S.
, and
Hemon
,
D.
,
1989
, “
Assessing the Significance of the Correlation Between Two Spatial Processes
,”
Biometrics
,
45
(
1
), pp.
123
134
.
8.
Dutilleul
,
P
.,
1993
, “
Modifying the t Test for Assessing the Correlation Between Two Spatial Processes
,”
Biometrics
,
49
(
1
), pp.
305
314
.
9.
Peiffer
,
V.
,
Bharath
,
A. A.
,
Sherwin
,
S. J.
, and
Weinberg
,
P. D.
,
2013
, “
A Novel Method for Quantifying Spatial Correlations Between Patterns of Atherosclerosis and Hemodynamic Factors
,”
ASME J. Biomech. Eng.
,
135
(
2
), p.
021023
.
10.
Deblauwe
,
V.
,
Kennel
,
P.
, and
Couteron
,
P.
,
2012
, “
Testing Pairwise Association Between Spatially Autocorrelated Variables: A New Approach Using Surrogate Lattice Data
,”
PloS One
,
7
(
11
), p.
e48766
.
11.
Robinson
,
W. S.
,
1950
, “
Ecological Correlations and the Behavior of Individuals
,”
Am. Sociol. Rev.
,
15
(
3
), pp.
351
357
.
12.
Peiffer
,
V.
,
Rowland
,
E. M.
,
Cremers
,
S. G.
,
Weinberg
,
P. D.
, and
Sherwin
,
S. J.
,
2012
, “
Effect of Aortic Taper on Patterns of Blood Flow and Wall Shear Stress in Rabbits: Association With Age
,”
Atherosclerosis
,
223
(
1
), pp.
114
121
.
13.
Clarke
,
L. A.
,
Mohri
,
Z.
, and
Weinberg
,
P. D.
,
2012
, “
High Throughput en face Mapping of Arterial Permeability Using Tile Scanning Confocal Microscopy
,”
Atherosclerosis
,
224
(
2
), pp.
417
425
.
14.
Cremers
,
S. G.
,
Wolffram
,
S. J.
, and
Weinberg
,
P. D.
,
2011
, “
Atheroprotective Effects of Dietary L-Arginine Increase With Age in Cholesterol-Fed Rabbits
,”
Br. J. Nutr.
,
105
(
10
), pp.
1439
1447
.
15.
Bond
,
A. R.
,
Iftikhar
,
S.
,
Bharath
,
A. A.
, and
Weinberg
,
P. D.
,
2011
, “
Morphological Evidence for a Change in the Pattern of Aortic Wall Shear Stress With Age
,”
Arterioscler. Thromb. Vasc. Biol.
,
31
(
3
), pp.
543
550
.
16.
Chen
,
Y.
,
2013
, “
New Approaches for Calculating Moran’s Index of Spatial Autocorrelation
,”
PloS One
,
8
(
7
), p.
e68336
.
17.
Anselin
,
L.
,
1995
, “
Local Indicators of Spatial Association—LISA
,”
Geogr. Anal.
,
27
(
2
), pp.
93
115
.
18.
Sivakoff
,
F. S.
,
Rosenheim
,
J. A.
,
Dutilleul
,
P.
, and
Carrière
,
Y.
,
2013
, “
Influence of the Surrounding Landscape on Crop Colonization by a Polyphagous Insect Pest
,”
Entomol. Exp. Appl.
,
149
(
1
), pp.
11
21
.
19.
Manly
,
B. F. J.
,
1997
,
Randomization, Bootstrap and Monte Carlo Methods in Biology
,
Chapman and Hall
,
London
.
20.
Schreiber
,
T.
, and
Schmitz
,
A.
,
1996
, “
Improved Surrogate Data for Nonlinearity Tests
,”
Phys. Rev. Lett.
,
77
(
4
), pp.
635
638
.
21.
Breakspear
,
M.
,
Brammer
,
M.
, and
Robinson
,
P. A.
,
2003
, “
Construction of Multivariate Surrogate Sets From Nonlinear Data Using the Wavelet Transform
,”
Physica D
,
182
(
1–2
), pp.
1
22
.
22.
Breakspear
,
M.
,
Brammer
,
M. J.
,
Bullmore
,
T.
,
Das
,
P.
, and
Williams
,
L. M.
,
2004
, “
Spatiotemporal Wavelet Resampling for Functional Neuroimaging Data
,”
Hum. Brain Mapp.
,
23
(
1
), pp.
1
25
.
23.
Kingsbury
,
N. G.
,
1998
, “
The Dual-Tree Complex Wavelet Transform: A New Technique for Shift Invariance and Directional Filters
,”
8th IEEE DSP Workshop, Bryce Canyon
, Aug. 9–12, Paper No. 86.
24.
de Rivaz
,
P.
,
2000
, “
Complex Wavelet Based Image Analysis and Synthesis
,” Ph.D. thesis,
University of Cambridge
,
Cambridge, UK
.
25.
Efron
,
B.
,
1979
, “
Bootstrap Methods: Another Look at the Jackknife
,”
Ann. Stat.
,
7
(
1
), pp.
1
26
.
26.
Efron
,
B.
, and
Tibshirani
,
R.
,
1994
,
An Introduction to the Bootstrap
,
Chapman & Hall/CRC
,
Boca Raton, FL
.
27.
Martin
,
M. A.
,
1990
, “
On the Double Bootstrap
,” Department of Statistics, Stanford University, Stanford, CA, Technical Report No. 347.
28.
Bhattacharya
,
B.
, and
Habtzghi
,
D.
,
2002
, “
Median of the p Value Under the Alternative Hypothesis
,”
Am. Stat.
,
56
(
3
), pp.
202
206
.
29.
Joiner
,
B. L.
,
1969
, “
The Median Significance Level and Other Small Sample Measures of Test Efficacy
,”
J. Am. Stat. Assoc.
,
64
(
327
), pp.
971
985
.
30.
Timmins
,
L. H.
,
Molony
,
D. S.
,
Eshtehardi
,
P.
,
McDaniel
,
M. C.
,
Oshinski
,
J. N.
,
Samady
,
H.
, and
Giddens
,
D. P.
,
2015
, “
Focal Association Between Wall Shear Stress and Clinical Coronary Artery Disease Progression
,”
Ann. Biomed. Eng.
,
43
(
1
), pp.
94
106
.
31.
Openshaw
,
S.
, and
Taylor
,
P. J.
,
1979
, “
A Million or so Correlation Coefficients: Three Experiments on the Modifiable Areal Unit Problem
,”
Statistical Applications in the Spatial Sciences
,
N.
Wrigley
, ed.,
Pion Limited
,
London
, pp.
127
144
.
32.
Mohamied
,
Y.
,
Rowland
,
E. M.
,
Bailey
,
E. L.
,
Sherwin
,
S. J.
,
Schwartz
,
M. A.
, and
Weinberg
,
P. D.
,
2015
, “
Change of Direction in the Biomechanics of Atherosclerosis
,”
Ann. Biomed. Eng.
,
43
(
1
), pp.
16
25
.
33.
Dunn
,
K. W.
,
Kamocka
,
M. M.
, and
McDonald
,
J. H.
,
2011
, “
A Practical Guide to Evaluating Colocalization in Biological Microscopy
,”
Am. J. Physiol. Cell. Physiol.
,
300
(
4
), pp.
C723
C742
.
34.
Wood
,
M
.,
2005
, “
Bootstrapped Confidence Intervals as an Approach to Statistical Inference
,”
Organ. Res. Methods
,
8
(
4
), pp.
454
470
.
35.
Gardner
,
M. J.
, and
Altman
,
D. G.
,
1986
, “
Confidence Intervals Rather Than P Values: Estimation Rather Than Hypothesis Testing
,”
Br. Med. J.
,
292
(
6522
), pp.
746
750
.
36.
Bickel
,
P. J.
, and
Krieger
,
A. M.
,
1989
, “
Confidence Bands for a Distribution Function Using the Bootstrap
,”
J. Am. Stat. Assoc.
,
84
(
405
), pp.
95
100
.
37.
Mooney
,
C. Z.
, and
Duval
,
R. D.
,
1993
,
Bootstrapping: A Nonparametric Approach to Statistical Inference
,
Sage
,
Newbury Park, CA
, p.
21
.
38.
DiCiccio
,
T. J.
, and
Efron
,
B.
,
1996
, “
Bootstrap Confidence Intervals
,”
Stat. Sci.
,
11
(
3
), pp.
189
228
.
39.
Wolfe
,
R.
, and
Hanley
,
J.
,
2002
, “
If We’re so Different, Why do We Keep Overlapping? When 1 Plus 1 Doesn’t Make 2
,”
Can. Med. Assoc. J.
,
166
(
1
), pp.
65
66
.
40.
Hesterberg
,
T.
,
Monaghan
,
S.
, and
Moore
,
D. S.
,
2009
, “
Bootstrap Methods and Permutation Tests
,”
The Practice of Business Statistics
,
2nd ed.
,
W. H.
Freeman
,
New York
, pp.
18-3
18-74
.
41.
Roberts
,
J. K.
, and
Fan
,
X.
,
2004
, “
Bootstrapping Within the Multilevel/Hierarchical Linear Modeling Framework: A Primer for Use With SAS and SPLUS
,”
Mult. Linear Regression Viewpoints
,
30
(
1
), pp.
23
34
.
42.
Fisher
,
R. A.
,
1915
, “
Frequency Distribution of the Values of the Correlation Coefficient in Samples of an Indefinitely Large Population
,”
Biometrika
,
10
(
4
), pp.
507
521
.
You do not currently have access to this content.