Much of the hand's functional capacity is due to the versatility of the motions at the thumb carpometacarpal (CMC) joint, which are presently incompletely defined. The aim of this study was to develop a mathematical model to completely describe the envelope of physiological motion of the thumb CMC joint and then to examine if there were differences in the kinematic envelope between women and men. In vivo kinematics of the first metacarpal with respect to the trapezium were computed from computed tomography (CT) volume images of 44 subjects (20M, 24F, 40.3 ± 17.7 yr) with no signs of CMC joint pathology. Kinematics of the first metacarpal were described with respect to the trapezium using helical axis of motion (HAM) variables and then modeled with discrete Fourier analysis. Each HAM variable was fit in a cyclic domain as a function of screw axis orientation in the trapezial articular plane; the RMSE of the fits was 14.5 deg, 1.4 mm, and 0.8 mm for the elevation, location, and translation, respectively. After normalizing for the larger bone size in men, no differences in the kinematic variables between sexes could be identified. Analysis of the kinematic data also revealed notable coupling of the primary rotations of the thumb with translation and internal and external rotations. This study advances our basic understanding of thumb CMC joint function and provides a complete description of the CMC joint for incorporation into future models of hand function. From a clinical perspective, our findings provide a basis for evaluating CMC pathology, especially the mechanically mediated aspects of osteoarthritis (OA), and should be used to inform artificial joint design, where accurate replication of kinematics is essential for long-term success.

References

References
1.
Hollister
,
A.
,
Buford
,
W. L.
,
Myers
,
L. M.
,
Giurintano
,
D. J.
, and
Novick
,
A.
,
1992
, “
The Axes of Rotation of the Thumb Carpometacarpal Joint
,”
J. Orthop. Res.
,
10
(
3
), pp.
454
460
.
2.
Edmunds
,
J. O.
,
2006
, “
Traumatic Dislocations and Instability of the Trapeziometacarpal Joint of the Thumb
,”
Hand Clin.
,
22
(
3
), pp.
365
392
.
3.
Edmunds
,
J. O.
,
2011
, “
Current Concepts of the Anatomy of the Thumb Trapeziometacarpal Joint
,”
J. Hand Surg.
,
36
(
1
), pp.
170
182
.
4.
Cheze
,
L.
,
Dumas
,
R.
,
Comtet
,
J. J.
, and
Rumelhart
,
C.
,
2011
, “
What is the Number of Independent Degrees of Freedom of the Trapeziometacarpal Joint? Preliminary In Vitro Results
,”
Comput. Methods Biomech. Biomed. Eng.
,
14
(
Suppl. 1
), pp.
17
18
.
5.
Hollister
,
A.
, and
Giurintano
,
D. J.
,
1995
, “
Thumb Movements, Motions, and Moments
,”
J. Hand Ther.
,
8
(
2
), pp.
106
114
.
6.
Miura
,
T.
,
Ohe
,
T.
, and
Masuko
,
T.
,
2004
, “
Comparative In Vivo Kinematic Analysis of Normal and Osteoarthritic Trapeziometacarpal Joints
,”
J. Hand Surg.
,
29
(
2
), pp.
252
257
.
7.
Nataraj
,
R.
, and
Li
,
Z.-M.
,
2013
, “
Robust Identification of Three-Dimensional Thumb and Index Finger Kinematics With a Minimal Set of Markers
,”
ASME J. Biomech. Eng.
,
135
(
9
), p.
91002
.
8.
Imaeda
,
T.
,
Niebur
,
G.
,
Cooney
,
W. P.
, 3rd
,
Linscheid
,
R. L.
, and
An
,
K. N.
,
1994
, “
Kinematics of the Normal Trapeziometacarpal Joint
,”
J. Orthop. Res.
,
12
(
2
), pp.
197
204
.
9.
Crisco
,
J. J.
,
Halilaj
,
E.
,
Moore
,
D. C.
,
Patel
,
T.
,
Weiss
,
A.-P. C.
, and
Ladd
,
A. L.
, “
In Vivo Kinematics of the Trapeziometacarpal Joint During Thumb Extension-Flexion and Abduction-Adduction
,”
J. Hand Surg.
,
40
(
2
), pp.
289
296
.
10.
Blankevoort
,
L.
,
Huiskes
,
R.
, and
de Lange
,
A.
,
1988
, “
The Envelope of Passive Knee Joint Motion
,”
J. Biomech.
,
21
(
9
), pp.
705
720
.
11.
McLeod
,
W. D.
,
Moschi
,
A.
,
Andrews
,
J. R.
, and
Hughston
,
J. C.
,
1977
, “
Tibial Plateau Topography
,”
Am. J. Sports Med.
,
5
(
1
), pp.
13
18
.
12.
Moglo
,
K. E.
, and
Shirazi-Adl
,
A.
,
2005
, “
Cruciate Coupling and Screw-Home Mechanism in Passive Knee Joint During Extension–Flexion
,”
J. Biomech.
,
38
(
5
), pp.
1075
1083
.
13.
Wilson
,
D. R.
,
Feikes
,
J. D.
,
Zavatsky
,
A. B.
, and
O'Connor
,
J. J.
,
2000
, “
The Components of Passive Knee Movement are Coupled to Flexion Angle
,”
J. Biomech.
,
33
(
4
), pp.
465
473
.
14.
Halilaj
,
E.
,
Rainbow
,
M. J.
,
Got
,
C.
,
Schwartz
,
J. B.
,
Moore
,
D. C.
,
Weiss
,
A.-P. C.
,
Ladd
,
A. L.
, and
Crisco
,
J. J.
,
2014
, “
In Vivo Kinematics of the Thumb Carpometacarpal Joint During Three Isometric Functional Tasks
,”
Clin. Orthop.
,
472
(
4
), pp.
1114
1122
.
15.
Halilaj
,
E.
,
Moore
,
D. C.
,
Laidlaw
,
D. H.
,
Got
,
C. J.
,
Weiss
,
A.-P. C.
,
Ladd
,
A. L.
, and
Crisco
,
J. J.
,
2014
, “
The Morphology of the Thumb Carpometacarpal Joint Does Not Differ Between Men and Women, but Changes With Aging and Early Osteoarthritis
,”
J. Biomech.
,
47
(
11
), pp.
2709
2714
.
16.
Halilaj
,
E.
,
Laidlaw
,
D. H.
,
Moore
,
D. C.
, and
Crisco
,
J. J.
,
2014
, “
Polar Histograms of Curvature for Quantifying Skeletal Joint Shape and Congruence
,”
ASME J. Biomech. Eng.
,
136
(
9
), p.
094503
.
17.
Halilaj
,
E.
,
Laidlaw
,
D. H.
,
Moore
,
D. C.
, and
Crisco
,
J. J.
,
2014
, “
How Do Sex, Age, and Osteoarthritis Affect Cartilage Thickness at the Thumb Carpometacarpal Joint? Insights From Subject-Specific Cartilage Modeling
,”
Bio-Imaging and Visualization for Patient-Customized Simulations
,
J. M. R. S.
Tavares
,
X.
Luo
, and
S.
Li
, eds.,
Springer International Publishing
, Cham, Switzerland, pp.
103
111
.
18.
Halilaj
,
E.
,
Moore
,
D. C.
,
Patel
,
T. K.
,
Laidlaw
,
D. H.
,
Ladd
,
A. L.
,
Weiss
,
A.-P. C.
, and
Crisco
,
J. J.
,
2014
, “
Thumb Carpometacarpal Joint Congruence During Functional Tasks and Thumb Range-of-Motion Activities
,”
2014 36th Annual International Conference of the IEEE Engineering in Medicine and Biology Society
(
EMBC
), Chicago, IL, Aug. 26–30, pp.
4354
4357
.
19.
Halilaj
,
E.
,
Rainbow
,
M. J.
,
Got
,
C. J.
,
Moore
,
D. C.
, and
Crisco
,
J. J.
,
2013
, “
A Thumb Carpometacarpal Joint Coordinate System Based on Articular Surface Geometry
,”
J. Biomech.
,
46
(
5
), pp.
1031
1034
.
20.
Marai
,
G. E.
,
Laidlaw
,
D. H.
, and
Crisco
,
J. J.
,
2006
, “
Super-Resolution Registration Using Tissue-Classified Distance Fields
,”
IEEE Trans. Med. Imaging
,
25
(
2
), pp.
177
187
.
21.
Panjabi
,
M. M.
,
Krag
,
M. H.
, and
Goel
,
V. K.
,
1981
, “
A Technique for Measurement and Description of Three-Dimensional Six Degree-of-Freedom Motion of a Body Joint With an Application to the Human Spine
,”
J. Biomech.
,
14
(
7
), pp.
447
460
.
22.
Short
,
W. H.
,
Werner
,
F. W.
,
Fortino
,
M. D.
, and
Mann
,
K. A.
,
1997
, “
Analysis of the Kinematics of the Scaphoid and Lunate in the Intact Wrist Joint
,”
Hand Clin.
,
13
(
1
), pp.
93
108
.
23.
Cooney
,
W. P.
, 3rd
,
Lucca
,
M. J.
,
Chao
,
E. Y.
, and
Linscheid
,
R. L.
,
1981
, “
The Kinesiology of the Thumb Trapeziometacarpal Joint
,”
J. Bone Jt. Surg. Am.
,
63
(
9
), pp.
1371
1381
.
24.
Kapandji
,
A.
,
1981
, “
Functional Anatomy and Biomechanics of the Metacarpo-Phalangeal Joint of the Thumb
,”
Ann. Chir.
,
35
(
4
), pp.
261
267
(author transl.).
25.
Cerveri
,
P.
,
De Momi
,
E.
,
Marchente
,
M.
,
Baud-Bovy
,
G.
,
Scifo
,
P.
,
Barros
,
R. M. L.
, and
Ferrigno
,
G.
,
2010
, “
Method for the Estimation of a Double Hinge Kinematic Model for the Trapeziometacarpal Joint Using MR Imaging
,”
Comput. Methods Biomech. Biomed. Eng.
,
13
(
3
), pp.
387
396
.
26.
Chang
,
L. Y.
, and
Pollard
,
N. S.
,
2008
, “
Method for Determining Kinematic Parameters of the In Vivo Thumb Carpometacarpal Joint
,”
IEEE Trans. Biomed. Eng.
,
55
(
7
), pp.
1897
1906
.
27.
Chèze
,
L.
,
Dumas
,
R.
,
Comtet
,
J.-J.
,
Rumelhart
,
C.
, and
Fayet
,
M.
,
2012
, “
Determination of the Number of Degrees of Freedom of the Trapeziometacarpal Joint—An In Vitro Study
,”
IRBM
,
33
(
4
), pp.
272
277
.
28.
Goubier
,
J.-N.
,
Devun
,
L.
,
Mitton
,
D.
,
Lavaste
,
F.
, and
Papadogeorgou
,
E.
,
2009
, “
Normal Range-of-Motion of Trapeziometacarpal Joint
,”
Chir. Main
,
28
(
5
), pp.
297
300
.
29.
Haines
,
R. W.
,
1944
, “
The Mechanism of Rotation at the First Carpo-Metacarpal Joint
,”
J. Anat.
,
78
(
1–2
), pp.
44
46
.
30.
Kuczynski
,
K.
,
1975
, “
The Thumb and the Saddle
,”
Hand
,
7
(
2
), pp.
120
122
.
31.
Huang
,
R. C.
,
Girardi
,
F. P.
,
Cammisa
,
F. P.
, and
Wright
,
T. M.
,
2003
, “
The Implications of Constraint in Lumbar Total Disc Replacement
,”
J. Spinal Disord. Tech.
,
16
(
4
), pp.
412
417
.
32.
Galbusera
,
F.
,
Bellini
,
C. M.
,
Raimondi
,
M. T.
,
Fornari
,
M.
, and
Assietti
,
R.
,
2008
, “
Cervical Spine Biomechanics Following Implantation of a Disc Prosthesis
,”
Med. Eng. Phys.
,
30
(
9
), pp.
1127
1133
.
33.
Schmidt
,
H.
,
Midderhoff
,
S.
,
Adkins
,
K.
, and
Wilke
,
H.-J.
,
2009
, “
The Effect of Different Design Concepts in Lumbar Total Disc Arthroplasty on the Range of Motion, Facet Joint Forces and Instantaneous Center of Rotation of a L4-5 Segment
,”
Eur. Spine J.
,
18
(
11
), pp.
1695
1705
.
34.
Galbusera
,
F.
,
Anasetti
,
F.
,
Bellini
,
C. M.
,
Costa
,
F.
, and
Fornari
,
M.
,
2010
, “
The Influence of the Axial, Antero-Posterior and Lateral Positions of the Center of Rotation of a Ball-and-Socket Disc Prosthesis on the Cervical Spine Biomechanics
,”
Clin. Biomech. (Bristol Avon)
,
25
(
5
), pp.
397
401
.
35.
Goel
,
V. K.
,
Faizan
,
A.
,
Palepu
,
V.
, and
Bhattacharya
,
S.
,
2012
, “
Parameters That Effect Spine Biomechanics Following Cervical Disc Replacement
,”
Eur. Spine J.
,
21
(
Suppl. 5
), pp.
S688
699
.
36.
Wilke
,
H.-J.
,
Schmidt
,
R.
,
Richter
,
M.
,
Schmoelz
,
W.
,
Reichel
,
H.
, and
Cakir
,
B.
,
2012
, “
The Role of Prosthesis Design on Segmental Biomechanics: Semi-Constrained Versus Unconstrained Prostheses and Anterior Versus Posterior Centre of Rotation
,”
Eur. Spine J.
,
21
(
Suppl. 5
), pp.
S577
584
.
37.
Shepherd
,
D. E. T.
, and
Johnstone
,
A. J.
,
2002
, “
Design Considerations for a Wrist Implant
,”
Med. Eng. Phys.
,
24
(
10
), pp.
641
650
.
38.
Banks
,
S. A.
, and
Hodge
,
W. A.
,
2004
, “
Implant Design Affects Knee Arthroplasty Kinematics During Stair-Stepping
,”
Clin. Orthop.
,
426
, pp.
187
193
.
39.
Banks
,
S. A.
, and
Hodge
,
W. A.
,
2004
, “
2003 Hap Paul Award Paper of the International Society for Technology in Arthroplasty. Design and Activity Dependence of Kinematics in Fixed and Mobile-Bearing Knee Arthroplasties
,”
J. Arthroplasty
,
19
(
7
), pp.
809
816
.
40.
Franta
,
A. K.
,
Lenters
,
T. R.
,
Mounce
,
D.
,
Neradilek
,
B.
, and
Matsen
,
F. A.
,
2007
, “
The Complex Characteristics of 282 Unsatisfactory Shoulder Arthroplasties
,”
J. Shoulder Elbow Surg.
,
16
(
5
), pp.
555
562
.
41.
Gregory
,
T.
,
Hansen
,
U.
,
Emery
,
R. J.
,
Augereau
,
B.
, and
Amis
,
A. A.
,
2007
, “
Developments in Shoulder Arthroplasty
,”
Proc. Inst. Mech. Eng., Part H
,
221
(
1
), pp.
87
96
.
42.
Gregory
,
T. M.
,
Sankey
,
A.
,
Augereau
,
B.
,
Vandenbussche
,
E.
,
Amis
,
A.
,
Emery
,
R.
, and
Hansen
,
U.
,
2013
, “
Accuracy of Glenoid Component Placement in Total Shoulder Arthroplasty and Its Effect on Clinical and Radiological Outcome in a Retrospective, Longitudinal, Monocentric Open Study
,”
PLoS One
,
8
(
10
), p.
e75791
.
43.
Nikooyan
,
A. A.
,
van der Helm
,
F. C. T.
,
Westerhoff
,
P.
,
Graichen
,
F.
,
Bergmann
,
G.
, and
Veeger
,
H. E. J. D.
,
2011
, “
Comparison of Two Methods for In Vivo Estimation of the Glenohumeral Joint Rotation Center (GH-JRC) of the Patients With Shoulder Hemiarthroplasty
,”
PLoS One
,
6
(
3
), p.
e18488
.
44.
Pearl
,
M. L.
,
2005
, “
Proximal Humeral Anatomy in Shoulder Arthroplasty: Implications for Prosthetic Design and Surgical Technique
,”
J. Shoulder Elbow Surg.
,
14
(
1 Suppl. S
), pp.
99S
104S
.
45.
Pearl
,
M. L.
, and
Kurutz
,
S.
,
1999
, “
Geometric Analysis of Commonly Used Prosthetic Systems for Proximal Humeral Replacement
,”
J. Bone Jt. Surg. Am.
,
81
(
5
), pp.
660
671
.
46.
Valero-Cuevas
,
F. J.
,
Johanson
,
M. E.
, and
Towles
,
J. D.
,
2003
, “
Towards a Realistic Biomechanical Model of the Thumb: The Choice of Kinematic Description May Be More Critical Than the Solution Method or the Variability/Uncertainty of Musculoskeletal Parameters
,”
J. Biomech.
,
36
(
7
), pp.
1019
1030
.
You do not currently have access to this content.