For the accurate prediction of the vascular disease progression, there is a crucial need for developing a systematic tool aimed toward patient-specific modeling. Considering the interpatient variations, a prior distribution of model parameters has a strong influence on computational results for arterial mechanics. One crucial step toward patient-specific computational modeling is to identify parameters of prior distributions that reflect existing knowledge. In this paper, we present a new systematic method to estimate the prior distribution for the parameters of a constrained mixture model using previous biaxial tests of healthy abdominal aortas (AAs). We investigate the correlation between the estimated parameters for each constituent and the patient's age and gender; however, the results indicate that the parameters are correlated with age only. The parameters are classified into two groups: Group-I in which the parameters ce, ck1, ck2, cm2,Ghc,andϕe are correlated with age, and Group-II in which the parameters cm1, Ghm, G1e, G2e,andα are not correlated with age. For the parameters in Group-I, we used regression associated with age via linear or inverse relations, in which their prior distributions provide conditional distributions with confidence intervals. For Group-II, the parameter estimated values were subjected to multiple transformations and chosen if the transformed data had a better fit to the normal distribution than the original. This information improves the prior distribution of a subject-specific model by specifying parameters that are correlated with age and their transformed distributions. Therefore, this study is a necessary first step in our group's approach toward a Bayesian calibration of an aortic model. The results from this study will be used as the prior information necessary for the initialization of Bayesian calibration of a computational model for future applications.

References

References
1.
Chien
,
S.
,
Li
,
S.
, and
Shyy
,
Y. J.
,
1998
, “
Effects of Mechanical Forces on Signal Transduction and Gene Expression in Endothelial Cells
,”
Hypertension
,
31
(
1 Pt 2
), pp.
162
169
.
2.
Guo
,
D.-C.
,
Papke
,
C. L.
,
He
,
R.
, and
Milewicz
,
D. M.
,
2006
, “
Pathogenesis of Thoracic and Abdominal Aortic Aneurysms
,”
Ann. N.Y. Acad. Sci.
,
1085
, pp.
339
352
.
3.
Humphrey
,
J. D.
, and
Holzapfel
,
G. A.
,
2012
, “
Mechanics, Mechanobiology, and Modeling of Human Abdominal Aorta and Aneurysms
,”
J. Biomech.
,
45
(
5
), pp.
805
814
.
4.
Thorne
,
B. C.
,
Hayenga
,
H. N.
,
Humphrey
,
J. D.
, and
Peirce
,
S. M.
,
2011
, “
Toward a Multi-Scale Computational Model of Arterial Adaptation in Hypertension: Verification of a Multi-Cell Agent Based Model
,”
Front. Physiol.
,
2
, p.
20
.
5.
Murtada
,
S.-I.
,
Kroon
,
M.
, and
Holzapfel
,
G. A.
,
2010
, “
A Calcium-Driven Mechanochemical Model for Prediction of Force Generation in Smooth Muscle
,”
Biomech. Modell. Mechanobiol.
,
9
(
6
), pp.
749
762
.
6.
Wilson
,
J. S.
,
Baek
,
S.
, and
Humphrey
,
J. D.
,
2012
, “
Importance of Initial Aortic Properties on the Evolving Regional Anisotropy, Stiffness and Wall Thickness of Human Abdominal Aortic Aneurysms
,”
J. R. Soc. Interface R. Soc.
,
9
(
74
), pp.
2047
2058
.
7.
Upchurch
,
G. R.
, and
Schaub
,
T. A.
,
2006
, “
Abdominal Aortic Aneurysm
,”
Am. Fam. Physician
,
73
(
7
), pp.
1198
1204
.
8.
Wilmink
,
T. B.
,
Quick
,
C. R.
,
Hubbard
,
C. S.
, and
Day
,
N. E.
,
1999
, “
The Influence of Screening on the Incidence of Ruptured Abdominal Aortic Aneurysms
,”
J. Vasc. Surg.
,
30
(
2
), pp.
203
208
.
9.
Assar
,
A. N.
, and
Zarins
,
C. K.
,
2009
, “
Ruptured Abdominal Aortic Aneurysm: A Surgical Emergency With Many Clinical Presentations
,”
Postgrad. Med. J.
,
85
(
1003
), pp.
268
273
.
10.
Pearce
,
W. H.
,
Zarins
,
C. K.
, and
Bacharach
,
J. M.
,
2008
, “
Atherosclerotic Peripheral Vascular Disease Symposium II Controversies in Abdominal Aortic Aneurysm Repair
,”
Circulation
,
118
(
25
), pp.
2860
2863
.
11.
Zeinali-Davarani
,
S.
,
Raguin
,
L. G.
,
Vorp
,
D. A.
, and
Baek
,
S.
,
2011
, “
Identification of In Vivo Material and Geometric Parameters of a Human Aorta: Toward Patient-Specific Modeling of Abdominal Aortic Aneurysm
,”
Biomech. Modell. Mechanobiol.
,
10
(
5
), pp.
689
699
.
12.
Rodríguez
,
J. F.
,
Ruiz
,
C.
,
Doblaré
,
M.
, and
Holzapfel
,
G. A.
,
2008
, “
Mechanical Stresses in Abdominal Aortic Aneurysms: Influence of Diameter, Asymmetry, and Material Anisotropy
,”
ASME J. Biomech. Eng.
,
130
(
2
), p.
021023
.
13.
Fillinger
,
M. F.
,
Marra
,
S. P.
,
Raghavan
,
M. L.
, and
Kennedy
,
F. E.
,
2003
, “
Prediction of Rupture Risk in Abdominal Aortic Aneurysm During Observation: Wall Stress Versus Diameter
,”
J. Vasc. Surg.
,
37
(
4
), pp.
724
732
.
14.
Vande Geest
,
J. P.
,
Di Martino
,
E. S.
,
Bohra
,
A.
,
Makaroun
,
M. S.
, and
Vorp
,
D. A.
,
2006
, “
A Biomechanics-Based Rupture Potential Index for Abdominal Aortic Aneurysm Risk Assessment
,”
Ann. N.Y. Acad. Sci.
,
1085
(
1
), pp.
11
21
.
15.
Fillinger
,
M. F.
,
Raghavan
,
M. L.
,
Marra
,
S. P.
,
Cronenwett
,
J. L.
, and
Kennedy
,
F. E.
,
2002
, “
In Vivo Analysis of Mechanical Wall Stress and Abdominal Aortic Aneurysm Rupture Risk
,”
J. Vasc. Surg.
,
36
(
3
), pp.
589
597
.
16.
Dorfmann
,
A.
,
Wilson
,
C.
,
Edgar
,
E. S.
, and
Peattie
,
R. A.
,
2009
, “
Evaluating Patient-Specific Abdominal Aortic Aneurysm Wall Stress Based on Flow-Induced Loading
,”
Biomech. Modell. Mechanobiol.
,
9
(
2
), pp.
127
139
.
17.
Raghavan
,
M. L.
, and
Vorp
,
D. A.
,
2000
, “
Toward a Biomechanical Tool to Evaluate Rupture Potential of Abdominal Aortic Aneurysm: Identification of a Finite Strain Constitutive Model and Evaluation of Its Applicability
,”
J. Biomech.
,
33
(
4
), pp.
475
482
.
18.
Maier
,
A.
,
Gee
,
M. W.
,
Reeps
,
C.
,
Pongratz
,
J.
,
Eckstein
,
H.-H.
, and
Wall
,
W. A.
,
2010
, “
A Comparison of Diameter, Wall Stress, and Rupture Potential Index for Abdominal Aortic Aneurysm Rupture Risk Prediction
,”
Ann. Biomed. Eng.
,
38
(
10
), pp.
3124
3134
.
19.
Baek
,
S.
,
Rajagopal
,
K. R.
, and
Humphrey
,
J. D.
,
2006
, “
A Theoretical Model of Enlarging Intracranial Fusiform Aneurysms
,”
ASME J. Biomech. Eng.
,
128
(
1
), pp.
142
149
.
20.
Watton
,
P. N.
,
Hill
,
N. A.
, and
Heil
,
M.
,
2004
, “
A Mathematical Model for the Growth of the Abdominal Aortic Aneurysm
,”
Biomech. Modell. Mechanobiol.
,
3
(
2
), pp.
98
113
.
21.
Watton
,
P. N.
, and
Hill
,
N. A.
,
2007
, “
Evolving Mechanical Properties of a Model of Abdominal Aortic Aneurysm
,”
Biomech. Modell. Mechanobiol.
,
8
(
1
), pp.
25
42
.
22.
Kroon
,
M.
, and
Holzapfel
,
G. A.
,
2007
, “
A Model for Saccular Cerebral Aneurysm Growth by Collagen Fibre Remodelling
,”
J. Theor. Biol.
,
247
(
4
), pp.
775
787
.
23.
Kroon
,
M.
, and
Holzapfel
,
G. A.
,
2009
, “
A Theoretical Model for Fibroblast-Controlled Growth of Saccular Cerebral Aneurysms
,”
J. Theor. Biol.
,
257
(
1
), pp.
73
83
.
24.
Hariton
,
I.
,
deBotton
,
G.
,
Gasser
,
T. C.
, and
Holzapfel
,
G. A.
,
2006
, “
Stress-Driven Collagen Fiber Remodeling in Arterial Walls
,”
Biomech. Modell. Mechanobiol.
,
6
(
3
), pp.
163
175
.
25.
Fung
,
Y. C.
,
Fronek
,
K.
, and
Patitucci
,
P.
,
1979
, “
Pseudoelasticity of Arteries and the Choice of Its Mathematical Expression
,”
Am. J. Physiol.
,
237
(
5
), pp.
H620
H631
.
26.
Takamizawa
,
K.
, and
Hayashi
,
K.
,
1987
, “
Strain Energy Density Function and Uniform Strain Hypothesis for Arterial Mechanics
,”
J. Biomech.
,
20
(
1
), pp.
7
17
.
27.
Holzapfel
,
G. A.
,
Gasser
,
T. C.
, and
Ogden
,
R. W.
,
2000
, “
A New Constitutive Framework for Arterial Wall Mechanics and a Comparative Study of Material Models
,”
J. Elast. Phys. Sci. Solids
,
61
(
1–3
), pp.
1
48
.
28.
Holzapfel
,
G. A.
,
Gasser
,
T. C.
, and
Ogden
,
R. W.
,
2004
, “
Comparison of a Multi-Layer Structural Model for Arterial Walls With a Fung-Type Model, and Issues of Material Stability
,”
ASME J. Biomech. Eng.
,
126
(
2
), pp.
264
275
.
29.
Hu
,
J.-J.
,
Baek
,
S.
, and
Humphrey
,
J. D.
,
2007
, “
Stress–Strain Behavior of the Passive Basilar Artery in Normotension and Hypertension
,”
J. Biomech.
,
40
(
11
), pp.
2559
2563
.
30.
Wan
,
W.
,
Dixon
,
J. B.
, and
Gleason
,
R. L.
, Jr.
,
2012
, “
Constitutive Modeling of Mouse Carotid Arteries Using Experimentally Measured Microstructural Parameters
,”
Biophys. J.
,
102
(
12
), pp.
2916
2925
.
31.
Gasser
,
T. C.
,
Ogden
,
R. W.
, and
Holzapfel
,
G. A.
,
2006
, “
Hyperelastic Modelling of Arterial Layers With Distributed Collagen Fibre Orientations
,”
J. R. Soc. Interface
,
3
(
6
), pp.
15
35
.
32.
Zeinali-Davarani
,
S.
,
Choi
,
J.
, and
Baek
,
S.
,
2009
, “
On Parameter Estimation for Biaxial Mechanical Behavior of Arteries
,”
J. Biomech.
,
42
(
4
), pp.
524
530
.
33.
Ferruzzi
,
J.
,
Vorp
,
D. A.
, and
Humphrey
,
J. D.
,
2011
, “
On Constitutive Descriptors of the Biaxial Mechanical Behaviour of Human Abdominal Aorta and Aneurysms
,”
J. R. Soc. Interface R. Soc.
,
8
(
56
), pp.
435
450
.
34.
Humphrey
,
J. D.
, and
Rajagopal
,
K. R.
,
2002
, “
A Constrained Mixture Model for Growth and Remodeling of Soft Tissues
,”
Math. Models Methods Appl. Sci.
,
12
(
3
), pp.
407
430
.
35.
Valentín
,
A.
, and
Holzapfel
,
G. A.
,
2012
, “
Constrained Mixture Models as Tools for Testing Competing Hypotheses in Arterial Biomechanics: A Brief Survey
,”
Mech. Res. Commun.
,
42
, pp.
126
133
.
36.
Zeinali-Davarani
,
S.
,
Sheidaei
,
A.
, and
Baek
,
S.
,
2011
, “
A Finite Element Model of Stress-Mediated Vascular Adaptation: Application to Abdominal Aortic Aneurysms
,”
Comput. Methods Biomech. Biomed. Eng.
,
14
(
9
), pp.
803
817
.
37.
Sheidaei
,
A.
,
Hunley
,
S. C.
,
Zeinali-Davarani
,
S.
,
Raguin
,
L. G.
, and
Baek
,
S.
,
2011
, “
Simulation of Abdominal Aortic Aneurysm Growth With Updating Hemodynamic Loads Using a Realistic Geometry
,”
Med. Eng. Phys.
,
33
(
1
), pp.
80
88
.
38.
Martufi
,
G.
, and
Gasser
,
T. C.
,
2012
, “
Turnover of Fibrillar Collagen in Soft Biological Tissue With Application to the Expansion of Abdominal Aortic Aneurysms
,”
J. R. Soc. Interface R. Soc.
,
9
(
77
), pp.
3366
3377
.
39.
Geest
,
J. P. V.
,
Sacks
,
M. S.
, and
Vorp
,
D. A.
,
2005
, “
Age Dependency of the Biaxial Biomechanical Behavior of Human Abdominal Aorta
,”
ASME J. Biomech. Eng.
,
126
(
6
), pp.
815
822
.
40.
Roccabianca
,
S.
,
Figueroa
,
C. A.
,
Tellides
,
G.
, and
Humphrey
,
J. D.
,
2014
, “
Quantification of Regional Differences in Aortic Stiffness in the Aging Human
,”
J. Mech. Behav. Biomed. Mater.
,
29
, pp.
618
634
.
41.
Baek
,
S.
,
Valentín
,
A.
, and
Humphrey
,
J. D.
,
2007
, “
Biochemomechanics of Cerebral Vasospasm and Its Resolution: II. Constitutive Relations and Model Simulations
,”
Ann. Biomed. Eng.
,
35
(
9
), pp.
1498
1509
.
42.
Burton
,
A. C.
,
1954
, “
Relation of Structure to Function of the Tissues of the Wall of Blood Vessels
,”
Physiol. Rev.
,
34
(
4
), pp.
619
642
.
43.
Vande Geest
,
J. P.
,
Sacks
,
M. S.
, and
Vorp
,
D. A.
,
2006
, “
The Effects of Aneurysm on the Biaxial Mechanical Behavior of Human Abdominal Aorta
,”
J. Biomech.
,
39
(
7
), pp.
1324
1334
.
44.
Zeinali-Davarani
,
S.
,
Raguin
,
L. G.
, and
Baek
,
S.
,
2011
, “
An Inverse Optimization Approach Toward Testing Different Hypotheses of Vascular Homeostasis Using Image-Based Models
,”
Int. J. Struct. Change Solids
,
3
(
2
), pp.
33
45
.
45.
Kennedy
,
M. C.
, and
O'Hagan
,
A.
,
2001
, “
Bayesian Calibration of Computer Models
,”
J. R. Stat. Soc. Ser. B Stat. Methodol.
,
63
(
3
), pp.
425
464
.
46.
Osborne
,
C.
, “
Statistical Calibration: A Review
,”
Int. Stat. Rev.
,
59
(
3
), pp.
309
336
.
47.
Reeps
,
C.
,
Maier
,
A.
,
Pelisek
,
J.
,
Härtl
,
F.
,
Grabher-Meier
,
V.
,
Wall
,
W. A.
,
Essler
,
M.
,
Eckstein
,
H.-H.
, and
Gee
,
M. W.
,
2012
, “
Measuring and Modeling Patient-Specific Distributions of Material Properties in Abdominal Aortic Aneurysm Wall
,”
Biomech. Modell. Mechanobiol.
,
12
(
4
), pp.
717
733
.
48.
Enevoldsen
,
M. S.
,
Henneberg
,
K.-A.
,
Jensen
,
J. A.
,
Lönn
,
L.
, and
Humphrey
,
J. D.
,
2011
, “
New Interpretation of Arterial Stiffening Due to Cigarette Smoking Using a Structurally Motivated Constitutive Model
,”
J. Biomech.
,
44
(
6
), pp.
1209
1211
.
49.
Forsell
,
C.
,
Swedenborg
,
J.
,
Roy
,
J.
, and
Gasser
,
T. C.
,
2013
, “
The Quasi-Static Failure Properties of the Abdominal Aortic Aneurysm Wall Estimated by a Mixed Experimental–Numerical Approach
,”
Ann. Biomed. Eng.
,
41
(
7
), pp.
1554
1566
.
50.
Sakia
,
R. M.
,
1992
, “
The Box–Cox Transformation Technique: A Review
,”
J. R. Stat. Soc. Ser. Stat.
,
41
(
2
), pp.
169
178
.
51.
Johnson
,
R. A.
, and
Wichern
,
D. W.
,
2007
,
Applied Multivariate Statistical Analysis, 6/E
, Pearson Education, New York.
52.
Sawabe
,
M.
,
2010
, “
Vascular Aging: From Molecular Mechanism to Clinical Significance
,”
Geriatr. Gerontol. Int.
,
10
(
Suppl 1
), pp.
S213
S220
.
53.
Greenwald
,
S. E.
,
2007
, “
Ageing of the Conduit Arteries
,”
J. Pathol.
,
211
(
2
), pp.
157
172
.
54.
Spina
,
M.
,
Garbisa
,
S.
,
Hinnie
,
J.
,
Hunter
,
J. C.
, and
Serafini-Fracassini
,
A.
,
1983
, “
Age-Related Changes in Composition and Mechanical Properties of the Tunica Media of the Upper Thoracic Human Aorta
,”
Arteriosclerosis
,
3
(
1
), pp.
64
76
.
55.
Rizzo
,
R. J.
,
McCarthy
,
W. J.
,
Dixit
,
S. N.
,
Lilly
,
M. P.
,
Shively
,
V. P.
,
Flinn
,
W. R.
, and
Yao
,
J. S.
,
1989
, “
Collagen Types and Matrix Protein Content in Human Abdominal Aortic Aneurysms
,”
J. Vasc. Surg.
,
10
(
4
), pp.
365
373
.
56.
He
,
C. M.
, and
Roach
,
M. R.
,
1994
, “
The Composition and Mechanical Properties of Abdominal Aortic Aneurysms
,”
J. Vasc. Surg.
,
20
(
1
), pp.
6
13
.
57.
O'Leary
,
S. A.
,
Healey
,
D. A.
,
Kavanagh
,
E. G.
,
Walsh
,
M. T.
,
McGloughlin
,
T. M.
, and
Doyle
,
B. J.
,
2014
, “
The Biaxial Biomechanical Behavior of Abdominal Aortic Aneurysm Tissue
,”
Ann. Biomed. Eng.
,
42
(
12
), pp.
2440
2450
.
You do not currently have access to this content.