The local interpretation of microfinite element (μFE) simulations plays a pivotal role for studying bone structure–function relationships such as failure processes and bone remodeling. In the past μFE simulations have been successfully validated on the apparent level, however, at the tissue level validations are sparse and less promising. Furthermore, intratrabecular heterogeneity of the material properties has been shown by experimental studies. We proposed an inverse μFE algorithm that iteratively changes the tissue level Young’s moduli such that the μFE simulation matches the experimental strain measurements. The algorithm is setup as a feedback loop where the modulus is iteratively adapted until the simulated strain matches the experimental strain. The experimental strain of human trabecular bone specimens was calculated from time-lapsed images that were gained by combining mechanical testing and synchrotron radiation microcomputed tomography (SRμCT). The inverse μFE algorithm was able to iterate the heterogeneous distribution of moduli such that the resulting μFE simulations matched artificially generated and experimentally measured strains.

References

1.
Christen
,
D.
,
Levchuk
,
A.
,
Schori
,
S.
,
Schneider
,
P.
,
Boyd
,
S. K.
, and
Müller
,
R.
,
2012
, “
Deformable Image Registration and 3D Strain Mapping for the Quantitative Assessment of Cortical Bone Microdamage
,”
J. Mech. Behav. Biomed. Mater.
,
8
, pp.
184
193
.10.1016/j.jmbbm.2011.12.009
2.
Donaldson
,
F.
,
Ruffoni
,
D.
,
Schneider
,
P.
,
Levchuk
,
A.
,
Zwahlen
,
A.
,
Pankaj
,
P.
, and
Müller
,
R.
,
2014
, “
Modeling Microdamage Behavior of Cortical Bone
,”
Biomech. Model. Mechanobiol.
,
13
(6), pp.
1227
1242
.10.1007/s10237-014-0568-6
3.
Green
,
J. O.
,
Nagaraja
,
S.
,
Diab
,
T.
,
Vidakovic
,
B.
, and
Guldberg
,
R. E.
,
2011
, “
Age-Related Changes in Human Trabecular Bone: Relationship Between Microstructural Stress and Strain and Damage Morphology
,”
J. Biomech.
,
44
(
12
), pp.
2279
2285
.10.1016/j.jbiomech.2011.05.034
4.
Nagaraja
,
S.
,
Lin
,
A. S. P.
, and
Guldberg
,
R. E.
,
2007
, “
Age-Related Changes in Trabecular Bone Microdamage Initiation
,”
Bone
,
40
(
4
), pp.
973
980
.10.1016/j.bone.2006.10.028
5.
Harrison
,
N. M.
,
McDonnell
,
P.
,
Mullins
,
L.
,
Wilson
,
N.
,
O'mahoney
,
D.
, and
Mchugh
,
P. E.
,
2013
, “
Failure Modelling of Trabecular Bone Using a Non-Linear Combined Damage and Fracture Voxel Finite Element Approach
,”
Biomech. Model. Mechanobiol.
,
12
(
2
), pp.
225
241
.10.1007/s10237-012-0394-7
6.
Hambli
,
R.
,
2013
, “
Micro-CT Finite Element Model and Experimental Validation of Trabecular Bone Damage and Fracture
,”
Bone
,
56
(
2
), pp.
363
374
.10.1016/j.bone.2013.06.028
7.
Fang
,
G.
,
Ji
,
B.
,
Liu
,
X. S.
, and
Guo
,
X. E.
,
2010
, “
Quantification of Trabecular Bone Microdamage Using the Virtual Internal Bond Model and the Individual Trabeculae Segmentation Technique
,”
Comput. Methods Biomech. Biomed. Eng.
,
13
(
5
), pp.
605
615
.10.1080/10255840903405660
8.
Bevill
,
G.
, and
Keaveny
,
T. M.
,
2009
, “
Trabecular Bone Strength Predictions Using Finite Element Analysis of Micro-Scale Images at Limited Spatial Resolution
,”
Bone
,
44
(
4
), pp.
579
584
.10.1016/j.bone.2008.11.020
9.
Verhulp
,
E.
,
Van Rietbergen
,
B.
,
Müller
,
R.
, and
Huiskes
,
R.
,
2008
, “
Micro-Finite Element Simulation of Trabecular-Bone Post-Yield Behaviour--Effects of Material Model, Element Size and Type
,”
Comput. Methods Biomech. Biomed. Eng.
,
11
(
4
), pp.
389
395
.10.1080/10255840701848756
10.
Kosmopoulos
,
V.
, and
Keller
,
T. S.
,
2008
, “
Predicting Trabecular Bone Microdamage Initiation and Accumulation Using a Non-Linear Perfect Damage Model
,”
Med. Eng. Phys.
,
30
(
6
), pp.
725
732
.10.1016/j.medengphy.2007.02.011
11.
Stolken
,
J. S.
, and
Kinney
,
J. H.
,
2003
, “
On the Importance of Geometric Nonlinearity in Finite-Element Simulations of Trabecular Bone Failure
,”
Bone
,
33
(
4
), pp.
494
504
.10.1016/S8756-3282(03)00214-X
12.
Tomar
,
V.
,
2008
, “
Modeling of Dynamic Fracture and Damage in Two-Dimensional Trabecular Bone Microstructures Using the Cohesive Finite Element Method
,”
ASME J. Biomech. Eng.
,
130
(
2
), p.
021021
.10.1115/1.2903434
13.
Niebur
,
G. L.
,
Feldstein
,
M. J.
,
Yuen
,
J. C.
,
Chen
,
T. J.
, and
Keaveny
,
T. M.
,
2000
, “
High-Resolution Finite Element Models with Tissue Strength Asymmetry Accurately Predict Failure of Trabecular Bone
,”
J. Biomech.
,
33
(
12
), pp.
1575
1583
.10.1016/S0021-9290(00)00149-4
14.
Christen
,
D.
,
Zwahlen
,
A.
, and
Müller
,
R.
,
2014
, “
Reproducibility for Linear and Nonlinear Micro-Finite Element Simulations with Density Derived Material Properties of the Human Radius
,”
J. Mech. Behav. Biomed. Mater.
,
29
, pp.
500
507
.10.1016/j.jmbbm.2013.10.010
15.
MacNeil
,
J. A.
, and
Boyd
,
S. K.
,
2008
, “
Bone Strength at the Distal Radius can be Estimated From High-Resolution Peripheral Quantitative Computed Tomography and the Finite Element Method
,”
Bone
,
42
(
6
), pp.
1203
1213
.10.1016/j.bone.2008.01.017
16.
Varga
,
P.
,
Pahr
,
D. H.
,
Baumbach
,
S.
, and
Zysset
,
P. K.
,
2010
, “
HR-pQCT Based FE Analysis of the most Distal Radius Section Provides an Improved Prediction of Colles' Fracture Load in vitro
,”
Bone
,
47
(
5
), pp.
982
988
.10.1016/j.bone.2010.08.002
17.
Pistoia
,
W.
,
Van Rietbergen
,
B.
,
Lochmuller
,
E. M.
,
Lill
,
C. A.
,
Eckstein
,
F.
, and
Ruegsegger
,
P.
,
2002
, “
Estimation of Distal Radius Failure Load with Micro-Finite Element Analysis Models Based on Three-Dimensional Peripheral Quantitative Computed Tomography Images
,”
Bone
,
30
(
6
), pp.
842
848
.10.1016/S8756-3282(02)00736-6
18.
Boutroy
,
S.
,
Van Rietbergen
,
B.
,
Sornay-Rendu
,
E.
,
Munoz
,
F.
,
Bouxsein
,
M. L.
, and
Delmas
,
P. D.
,
2008
, “
Finite Element Analysis Based on in Vivo HR-pQCT Images of the Distal Radius Is Associated with Wrist Fracture in Postmenopausal Women
,”
J. Bone Miner. Res.
,
23
(
3
), pp.
392
399
.10.1359/jbmr.071108
19.
Melton
,
L.
,
Christen
,
D.
,
Riggs
,
B.
,
Achenbach
,
S.
,
Müller
,
R.
,
Van Lenthe
,
G.
,
Amin
,
S.
,
Atkinson
,
E.
, and
Khosla
,
S.
,
2010
, “
Assessing Forearm Fracture Risk in Postmenopausal Women
,”
Osteoporosis Int.
,
21
(
7
), pp.
1161
1169
.10.1007/s00198-009-1047-2
20.
Vilayphiou
,
N.
,
Boutroy
,
S.
,
Sornay-Rendu
,
E.
,
Van Rietbergen
,
B.
,
Munoz
,
F.
,
Delmas
,
P. D.
, and
Chapurlat
,
R.
,
2010
, “
Finite Element Analysis Performed on Radius and Tibia HR-pQCT Images and Fragility Fractures at all Sites in Postmenopausal Women
,”
Bone
,
46
(
4
), pp.
1030
1037
.10.1016/j.bone.2009.12.015
21.
Chevalley
,
T.
,
Bonjour
,
J. P.
,
Van Rietbergen
,
B.
,
Ferrari
,
S.
, and
Rizzoli
,
R.
,
2013
, “
Fracture History of Healthy Premenopausal Women is Associated with a Reduction of Cortical Microstructural Components at the Distal Radius
,”
Bone
,
55
(
2
), pp.
377
383
.10.1016/j.bone.2013.04.025
22.
Nishiyama
,
K. K.
,
MacDonald
,
H. M.
,
Hanley
,
D. A.
, and
Boyd
,
S. K.
,
2013
, “
Women with Previous Fragility Fractures Can Be Classified Based on Bone Microarchitecture and Finite Element Analysis Measured with HR-pQCT
,”
Osteoporosis Int.
,
24
(
5
), pp.
1733
1740
.10.1007/s00198-012-2160-1
23.
Vilayphiou
,
N.
,
Boutroy
,
S.
,
Szulc
,
P.
,
Van Rietbergen
,
B.
,
Munoz
,
F.
,
Delmas
,
P. D.
, and
Chapurlat
,
R.
,
2011
, “
Finite Element Analysis Performed on Radius and Tibia HR-pQCT Images and Fragility Fractures at all Sites in Men
,”
J. Bone Miner. Res.
,
26
(
5
), pp.
965
973
.10.1002/jbmr.297
24.
Frost
,
H. M.
,
1990
, “
Skeletal Structural Adaptations to Mechanical Usage (Satmu): 1. Redefining Wolff's Law: The Bone Modeling Problem
,”
Anat. Rec.
,
226
(
4
), pp.
403
413
.10.1002/ar.1092260402
25.
Robling
,
A. G.
,
Castillo
,
A. B.
, and
Turner
,
C. H.
,
2006
, “
Biomechanical and Molecular Regulation of Bone Remodeling
,”
Annu. Rev. Biomed. Eng.
,
8
, pp.
455
498
.10.1146/annurev.bioeng.8.061505.095721
26.
Herman
,
B. C.
,
Cardoso
,
L.
,
Majeska
,
R. J.
,
Jepsen
,
K. J.
, and
Schaffler
,
M. B.
,
2010
, “
Activation of Bone Remodeling After Fatigue: Differential Response to Linear Microcracks and Diffuse Damage
,”
Bone
,
47
(
4
), pp.
766
772
.10.1016/j.bone.2010.07.006
27.
Sugiyama
,
T.
,
Meakin
,
L. B.
,
Browne
,
W. J.
,
Galea
,
G. L.
,
Price
,
J. S.
, and
Lanyon
,
L. E.
,
2012
, “
Bones' Adaptive Response to Mechanical Loading is Essentially Linear Between the Low Strains Associated with Disuse and the High Strains Associated with the Lamellar/Woven Bone Transition
,”
J. Bone Miner. Res.
,
27
(
8
), pp.
1784
1793
.10.1002/jbmr.1599
28.
Ellman
,
R.
,
Spatz
,
J.
,
Cloutier
,
A.
,
Palme
,
R.
,
Christiansen
,
B. A.
, and
Bouxsein
,
M. L.
,
2013
, “
Partial Reductions in Mechanical Loading Yield Proportional Changes in Bone Density, Bone Architecture, and Muscle Mass
,”
J. Bone Miner. Res.
,
28
(
4
), pp.
875
885
.10.1002/jbmr.1814
29.
Christen
,
P.
,
Ito
,
K.
,
Ellouz
,
R.
,
Boutroy
,
S.
,
Sornay-Rendu
,
E.
,
Chapurlat
,
R. D.
, and
Van Rietbergen
,
B.
,
2014
, “
Bone Remodelling in Humans is Load-Driven but Not Lazy
,”
Nat. Commun.
,
5
, p.
4855
.10.1038/ncomms5855
30.
Schulte
,
F. A.
,
Ruffoni
,
D.
,
Lambers
,
F. M.
,
Christen
,
D.
,
Webster
,
D. J.
,
Kuhn
,
G.
, and
Müller
,
R.
,
2013
, “
Local Mechanical Stimuli Regulate Bone Formation and Resorption in Mice at the Tissue Level
,”
PLoS One
,
8
(
4
), p. e62172. 10.1371/journal.pone.0062172
31.
Mc Donnell
,
P.
,
Harrison
,
N.
,
Liebschner
,
M. a. K.
, and
McHugh
,
P. E.
,
2009
, “
Simulation of Vertebral Trabecular Bone Loss Using Voxel Finite Element Analysis
,”
J. Biomech.
,
42
(
16
), pp.
2789
2796
.10.1016/j.jbiomech.2009.07.038
32.
Christen
,
P.
,
Ito
,
K.
,
Müller
,
R.
,
Rubin
,
M. R.
,
Dempster
,
D. W.
,
Bilezikian
,
J. P.
, and
Van Rietbergen
,
B.
,
2012
, “
Patient-Specific Bone Modelling and Remodelling Simulation of Hypoparathyroidism Based on Human Iliac Crest Biopsies
,”
J. Biomech.
,
45
(
14
), pp.
2411
2416
.10.1016/j.jbiomech.2012.06.031
33.
Tsubota
,
K.
,
Suzuki
,
Y.
,
Yamada
,
T.
,
Hojo
,
M.
,
Makinouchi
,
A.
, and
Adachi
,
T.
,
2009
, “
Computer Simulation of Trabecular Remodeling in Human Proximal Femur Using Large-Scale Voxel FE Models: Approach to Understanding Wolff's Law
,”
J. Biomech.
,
42
(
8
), pp.
1088
1094
.10.1016/j.jbiomech.2009.02.030
34.
Schulte
,
F. A.
,
Zwahlen
,
A.
,
Lambers
,
F. M.
,
Kuhn
,
G.
,
Ruffoni
,
D.
,
Betts
,
D.
,
Webster
,
D. J.
, and
Müller
,
R.
,
2013
, “
Strain-Adaptive in Silico Modeling of Bone Adaptation—A Computer Simulation Validated by in Vivo Micro-Computed Tomography Data
,”
Bone
,
52
(
1
), pp.
485
492
.10.1016/j.bone.2012.09.008
35.
Verbruggen
,
S. W.
,
Vaughan
,
T. J.
, and
McNamara
,
L. M.
,
2012
, “
Strain Amplification in Bone Mechanobiology: A Computational Investigation of the in vivo Mechanics of Osteocytes
,”
J. R. Soc. Interface
,
9
(
75
), pp.
2735
2744
.10.1098/rsif.2012.0286
36.
Bouxsein
,
M. L.
,
2008
, “
Technology Insight: Noninvasive Assessment of Bone Strength in Osteoporosis
,”
Nat. Clin. Pract. Rheumatol.
,
4
(
6
), pp.
310
318
.10.1038/ncprheum0798
37.
Van Lenthe
,
G. H.
, and
Müller
,
R.
,
2006
, “
Prediction of Failure Load Using Micro-Finite Element Analysis Models: Toward in vivo Strength Assessment
,”
Drug Discovery Today: Technol.
,
3
(
2
), pp.
221
229
.10.1016/j.ddtec.2006.06.001
38.
Levchuk
,
A.
,
Zwahlen
,
A.
,
Weigt
,
C.
,
Lambers
,
F. M.
,
Badilatti
,
S. D.
,
Schulte
,
F. A.
,
Kuhn
,
G.
, and
Müller
,
R.
,
2014
, “
The Clinical Biomechanics Award 2012—Presented by the European Society of Biomechanics: Large Scale Simulations of Trabecular Bone Adaptation to Loading and Treatment
,”
Clin. Biomech.
,
29
(
4
), pp.
355
362
.10.1016/j.clinbiomech.2013.12.019
39.
Chevalier
,
Y.
,
Pahr
,
D.
,
Allmer
,
H.
,
Charlebois
,
M.
, and
Zysset
,
P.
,
2007
, “
Validation of a Voxel-Based FE Method for Prediction of the Uniaxial Apparent Modulus of Human Trabecular Bone Using Macroscopic Mechanical Tests and Nanoindentation
,”
J. Biomech.
,
40
(
15
), pp.
3333
3340
.10.1016/j.jbiomech.2007.05.004
40.
Basler
,
S. E.
,
Müller
,
T. L.
,
Christen
,
D.
,
Wirth
,
A. J.
,
Müller
,
R.
, and
Van Lenthe
,
G. H.
,
2011
, “
Towards Validation of Computational Analyses of Peri-Implant Displacements by Means of Experimentally Obtained Displacement Maps
,”
Comput. Methods Biomech. Biomed. Eng.
,
14
(
2
), pp.
165
174
.10.1080/10255842.2010.537263
41.
Zauel
,
R.
,
Yeni
,
Y. N.
,
Bay
,
B. K.
,
Dong
,
X. N.
, and
Fyhrie
,
D. P.
,
2006
, “
Comparison of the Linear Finite Element Prediction of Deformation and Strain of Human Cancellous Bone to 3D Digital Volume Correlation Measurements
,”
ASME J. Biomech. Eng.
,
128
(
1
), pp.
1
6
.10.1115/1.2146001
42.
Mulder
,
L.
,
Koolstra
,
J. H.
,
Den Toonder
,
J. M. J.
, and
Van Eijden
,
T. M. G. J.
,
2007
, “
Intratrabecular Distribution of Tissue Stiffness and Mineralization in Developing Trabecular Bone
,”
Bone
,
41
(
2
), pp.
256
265
.10.1016/j.bone.2007.04.188
43.
Hengsberger
,
S.
,
Kulik
,
A.
, and
Zysset
,
P.
,
2001
, “
A Combined Atomic Force Microscopy and Nanoindentation Technique to Investigate the Elastic Properties of Bone Structural Units
,”
Eur. Cell. Mater.
,
1
, pp.
12
17
.
44.
Jaasma
,
M. J.
,
Bayraktar
,
H. H.
,
Niebur
,
G. L.
, and
Keaveny
,
T. M.
,
2002
, “
Biomechanical Effects of Intraspecimen Variations in Tissue Modulus for Trabecular Bone
,”
J. Biomech.
,
35
(
2
), pp.
237
246
.10.1016/S0021-9290(01)00193-2
45.
Van Der Linden
,
J. C.
,
Birkenhäger-Frenkel
,
D. H.
,
Verhaar
,
J. A. N.
, and
Weinans
,
H.
,
2001
, “
Trabecular Bone's Mechanical Properties Are Affected by Its Non-Uniform Mineral Distribution
,”
J. Biomech.
,
34
(
12
), pp.
1573
1580
.10.1016/S0021-9290(01)00146-4
46.
Van Ruijven
,
L. J.
,
Mulder
,
L.
, and
Van Eijden
,
T. M. G. J.
,
2007
, “
Variations in Mineralization Affect the Stress and Strain Distributions in Cortical and Trabecular Bone
,”
J. Biomech.
,
40
(
6
), pp.
1211
1218
.10.1016/j.jbiomech.2006.06.004
47.
Harrison
,
N. M.
,
McDonnell
,
P. F.
,
O'mahoney
,
D. C.
,
Kennedy
,
O. D.
,
O'Brien
,
F. J.
, and
McHugh
,
P. E.
,
2008
, “
Heterogeneous Linear Elastic Trabecular Bone Modelling Using Micro-CT Attenuation Data and Experimentally Measured Heterogeneous Tissue Properties
,”
J. Biomech.
,
41
(
11
), pp.
2589
2596
.10.1016/j.jbiomech.2008.05.014
48.
Bourne
,
B. C.
, and
Van Der Meulen
,
M. C. H.
,
2004
, “
Finite Element Models Predict Cancellous Apparent Modulus When Tissue Modulus Is Scaled from Specimen CT-Attenuation
,”
J. Biomech.
,
37
(
5
), pp.
613
621
.10.1016/j.jbiomech.2003.10.002
49.
Currey
,
J. D.
,
1988
, “
The Effect of Porosity and Mineral-Content on the Young's Modulus of Elasticity of Compact-Bone
,”
J. Biomech.
,
21
(
2
), pp.
131
139
.10.1016/0021-9290(88)90006-1
50.
Gross
,
T.
,
Pahr
,
D. H.
,
Peyrin
,
F.
, and
Zysset
,
P. K.
,
2012
, “
Mineral Heterogeneity has a Minor Influence on the Apparent Elastic Properties of Human Cancellous Bone: A SrμCT-Based Finite Element Study
,”
Comput. Methods Biomech. Biomed. Eng.
,
15
(
11
), pp.
1137
1144
.10.1080/10255842.2011.581236
51.
Weis
,
J. A.
,
Miga
,
M. I.
,
Granero-Moltó
,
F.
, and
Spagnoli
,
A.
,
2010
, “
A Finite Element Inverse Analysis to Assess Functional Improvement During the Fracture Healing Process
,”
J. Biomech.
,
43
(
3
), pp.
557
562
.10.1016/j.jbiomech.2009.09.051
52.
Gupta
,
H. S.
,
Stachewicz
,
U.
,
Wagermaier
,
W.
,
Roschger
,
P.
,
Wagner
,
H. D.
, and
Fratzl
,
P.
,
2006
, “
Mechanical Modulation at the Lamellar Level in Osteonal Bone
,”
J. Mater. Res.
,
21
(
8
), pp.
1913
1921
.10.1557/jmr.2006.0234
53.
Smith
,
L. J.
,
Schirer
,
J. P.
, and
Fazzalari
,
N. L.
,
2010
, “
The Role of Mineral Content in Determining the Micromechanical Properties of Discrete Trabecular Bone Remodeling Packets
,”
J. Biomech.
,
43
(
16
), pp.
3144
3149
.10.1016/j.jbiomech.2010.07.038
54.
Beck
,
J. V.
, and
Woodbury
,
K. A.
,
1998
, “
Inverse Problems and Parameter Estimation: Integration of Measurements and Analysis
,”
Meas. Sci. Technol.
,
9
(
6
), pp.
839
847
.10.1088/0957-0233/9/6/001
55.
Maniatty
,
A.
,
Zabaras
,
N.
, and
Stelson
,
K.
,
1989
, “
Finite-Element Analysis of some Inverse Elasticity Problems
,”
ASCE J. Eng. Mech.
,
115
(
6
), pp.
1303
1317
.10.1061/(ASCE)0733-9399(1989)115:6(1303)
56.
Schnur
,
D. S.
, and
Zabaras
,
N.
,
1992
, “
An Inverse Method for Determining Elastic-Material Properties and a Material Interface
,”
Int. J. Numer. Methods Eng.
,
33
(
10
), pp.
2039
2057
.10.1002/nme.1620331004
57.
Schnur
,
D. S.
, and
Zabaras
,
N.
,
1990
, “
Finite-Element Solution of 2-Dimensional Inverse Elastic Problems Using Spatial Smoothing
,”
Int. J. Numer. Methods Eng.
,
30
(
1
), pp.
57
75
.10.1002/nme.1620300105
58.
Van Rietbergen
,
B.
,
Weinans
,
H.
,
Huiskes
,
R.
, and
Odgaard
,
A.
,
1995
, “
A New Method to Determine Trabecular Bone Elastic Properties and Loading Using Micromechanical Finite-Element Models
,”
J. Biomech.
,
28
(
1
), pp.
69
81
.10.1016/0021-9290(95)80008-5
59.
Bosisio
,
M. R.
,
Talmant
,
M.
,
Skalli
,
W.
,
Laugier
,
P.
, and
Mitton
,
D.
,
2007
, “
Apparent Young's Modulus of Human Radius Using Inverse Finite-Element Method
,”
J. Biomech.
,
40
(
9
), pp.
2022
2028
.10.1016/j.jbiomech.2006.09.018
60.
Odin
,
G.
,
Savoldelli
,
C.
,
Bouchard
,
P. O.
, and
Tillier
,
Y.
,
2010
, “
Determination of Young's Modulus of Mandibular Bone Using Inverse Analysis
,”
Med. Eng. Phys.
,
32
(
6
), pp.
630
637
.10.1016/j.medengphy.2010.03.009
61.
Verhulp
,
E.
,
Van Rietbergen
,
B.
,
Müller
,
R.
, and
Huiskes
,
R.
,
2008
, “
Indirect Determination of Trabecular Bone Effective Tissue Failure Properties Using Micro-Finite Element Simulations
,”
J. Biomech.
,
41
(
7
), pp.
1479
1485
.10.1016/j.jbiomech.2008.02.032
62.
Garo
,
A.
,
Arnoux
,
P. J.
, and
Aubin
,
C. E.
,
2009
, “
Estimation of Bone Material Properties Using an Inverse Finite Element Method
,”
Comput. Methods Biomech. Biomed. Eng.
,
12
(
suppl. 1
), pp.
121
122
.10.1080/10255840903080851
63.
Hardisty
,
M. R.
,
Zauel
,
R.
,
Stover
,
S. M.
, and
Fyhrie
,
D. P.
,
2013
, “
The Importance of Intrinsic Damage Properties to Bone Fragility: A Finite Element Study
,”
ASME J. Biomech. Eng.
,
135
(
1
), p.
011004
.10.1115/1.4023090
64.
Greenleaf
,
J. F.
,
Fatemi
,
M.
, and
Insana
,
M.
,
2003
, “
Selected Methods for Imaging Elastic Properties of Biological Tissues
,”
Annu. Rev. Biomed. Eng.
,
5
, pp.
57
78
.10.1146/annurev.bioeng.5.040202.121623
65.
Ophir
,
J.
,
Cespedes
,
I.
,
Ponnekanti
,
H.
,
Yazdi
,
Y.
, and
Li
,
X.
,
1991
, “
Elastography—A Quantitative Method for Imaging the Elasticity of Biological Tissues
,”
Ultras. Imaging
,
13
(
2
), pp.
111
134
.10.1177/016173469101300201
66.
Samani
,
A.
, and
Plewes
,
D.
,
2007
, “
An Inverse Problem Solution for Measuring the Elastic Modulus of Intact Ex Vivo Breast Tissue Tumours
,”
Phys. Med. Biol.
,
52
(
5
), pp.
1247
1260
.10.1088/0031-9155/52/5/003
67.
Nazarian
,
A.
, and
Müller
,
R.
,
2004
, “
Time-Lapsed Microstructural Imaging of Bone Failure Behavior
,”
J. Biomech.
,
37
(
1
), pp.
55
65
.10.1016/S0021-9290(03)00254-9
68.
Schneider
,
P.
,
Levchuk
,
A.
, and
Müller
,
R.
,
2010
, “
Automated Micro-Compression Device for Dynamic Image-Guided Failure Assessment of Bone Ultrastructure and Bone Microdamage
,”
Biomed. Tech./Biomed. Eng.
,
55
(
s1
), pp.
8
10
.
69.
Thirion
,
J. P.
,
1998
, “
Image Matching as a Diffusion Process: An Analogy with Maxwell's Demons
,”
Med. Image Anal.
,
2
(
3
), pp.
243
260
.10.1016/S1361-8415(98)80022-4
70.
Pauchard
,
Y.
,
Mattmann
,
C.
,
Kuhn
,
A.
,
Gasser
,
J. A.
, and
Boyd
,
S. K.
,
2008
, “
European Society of Biomechanics Sm Perren Award 2008: Using Temporal Trends of 3D Bone Micro-Architecture to Predict Bone Quality
,”
J. Biomech.
,
41
(
14
), pp.
2946
2953
.10.1016/j.jbiomech.2008.07.036
71.
McGinty
,
B.
,
2014
, von Mises Stress, www.continuummechanics.org
72.
Ruimerman
,
R.
,
Hilbers
,
P.
,
Van Rietbergen
,
B.
, and
Huiskes
,
R.
,
2005
, “
A Theoretical Framework for Strain-Related Trabecular Bone Maintenance and Adaptation
,”
J. Biomech.
,
38
(
4
), pp.
931
941
.10.1016/j.jbiomech.2004.03.037
73.
Flaig
,
C.
, and
Arbenz
,
P.
,
2011
, “
A Scalable Memory Efficient Multigrid Solver for Micro-Finite Element Analyses Based on CT Images
,”
Parallel Comput.
,
37
(
12
), pp.
846
854
.10.1016/j.parco.2011.08.001
74.
Christen
,
P.
,
Ito
,
K.
,
Knippels
,
I.
,
Müller
,
R.
,
Van Lenthe
,
G. H.
, and
Van Rietbergen
,
B.
,
2013
, “
Subject-Specific Bone Loading Estimation in the Human Distal Radius
,”
J. Biomech.
,
46
(
4
), pp.
759
766
.10.1016/j.jbiomech.2012.11.016
75.
Granke
,
M.
,
Gourrier
,
A.
,
Rupin
,
F.
,
Raum
,
K.
,
Peyrin
,
F.
,
Burghammer
,
M.
,
Saied
,
A.
, and
Laugier
,
P.
,
2013
, “
Microfibril Orientation Dominates the Microelastic Properties of Human Bone Tissue at the Lamellar Length Scale
,”
PLoS One
,
8
(
3
), p. e58043.10.1371/journal.pone.0058043
You do not currently have access to this content.