There are many methods used to estimate the undamaged effective (apparent) moduli of cancellous bone as a function of bone volume fraction (BV/TV), mean intercept length (MIL), and other image based average microstructural measures. The MIL and BV/TV are both only functions of the cancellous microstructure and, therefore, cannot directly account for damage induced changes in the intrinsic trabecular hard tissue mechanical properties. Using a nonlinear finite element (FE) approximation for the degradation of effective modulus as a function of applied effective compressive strain, we demonstrate that a measurement of the directional tortuosity of undamaged trabecular hard tissue strongly predicts directional effective modulus (r2> 0.90) and directional effective modulus degradation (r2> 0.65). This novel measure of cancellous bone directional tortuosity has the potential for development into an anisotropic approach for calculating effective mechanical properties as a function of trabecular level material damage applicable to understanding how tissue microstructure and intrinsic hard tissue moduli interact to determine cancellous bone quality.

References

References
1.
Kannus
,
P.
,
Palvanen
,
M.
,
Niemi
,
S.
,
Parkkari
,
J.
,
Jarvinen
,
M.
, and
Vuori
,
I.
,
1996
, “
Increasing Number and Incidence of Osteoporotic Fractures of the Proximal Humerus in Elderly People
,”
BMJ
,
313
(
7064
), pp.
1051
1052
.10.1136/bmj.313.7064.1051
2.
Lips
,
P.
,
1997
, “
Epidemiology and Predictors of Fractures Associated With Osteoporosis
,”
Am. J. Med.
,
103
(
2A
), pp.
3S
8S
[Discussion, pp. 8S–11S].10.1016/S0002-9343(97)90021-8
3.
Ciarelli
,
T. E.
,
Fyhrie
,
D. P.
,
Schaffler
,
M. B.
, and
Goldstein
,
S. A.
,
2000
, “
Variations in Three-Dimensional Cancellous Bone Architecture of the Proximal Femur in Female Hip Fractures and in Controls
,”
J. Bone Miner. Res.
,
15
(
1
), pp.
32
40
.10.1359/jbmr.2000.15.1.32
4.
Hardisty
,
M. R.
,
Zauel
,
R.
,
Stover
,
S. M.
, and
Fyhrie
,
D. P.
,
2013
, “
The Importance of Intrinsic Damage Properties to Bone Fragility: A Finite Element Study
,”
ASME J. Biomech. Eng.
,
135
(
1
), p.
011004
.10.1115/1.4023090
5.
Burr
,
D. B.
,
2004
, “
Bone Quality: Understanding What Matters
,”
J. Musculoskeletal Neuronal Interact.
,
4
(
2
), pp.
184
186
. Available at: http://www.ismni.org/jmni/pdf/16/17BURR.pdf?origin=publication_detail
6.
Ettinger
,
B.
,
Burr
,
D. B.
, and
Ritchie
,
R. O.
,
2013
, “
Proposed Pathogenesis for Atypical Femoral Fractures: Lessons From Materials Research
,”
Bone
,
55
(
2
), pp.
495
500
.10.1016/j.bone.2013.02.004
7.
Amin
,
S.
,
Kopperdhal
,
D. L.
,
Melton
,
L. J.
, 3rd
,
Achenbach
,
S. J.
,
Therneau
,
T. M.
,
Riggs
,
B. L.
,
Keaveny
,
T. M.
, and
Khosla
,
S.
,
2011
, “
Association of Hip Strength Estimates by Finite-Element Analysis With Fractures in Women and Men
,”
J. Bone Miner. Res.
,
26
(
7
), pp.
1593
1600
.10.1002/jbmr.347
8.
Keaveny
,
T. M.
,
McClung
,
M. R.
,
Genant
,
H. K.
,
Zanchetta
,
J. R.
,
Kendler
,
D.
,
Brown
,
J. P.
,
Goemaere
,
S.
,
Recknor
,
C.
,
Brandi
,
M. L.
,
Eastell
,
R.
,
Kopperdahl
,
D. L.
,
Engelke
,
K.
,
Fuerst
,
T.
,
Radcliffe
,
H. S.
, and
Libanati
,
C.
,
2014
, “
Femoral and Vertebral Strength Improvements in Postmenopausal Women With Osteoporosis Treated With Denosumab
,”
J. Bone Miner. Res.
,
29
(
1
), pp.
158
165
.10.1002/jbmr.2024
9.
Bridges
,
D.
,
Randall
,
C.
, and
Hansma
,
P. K.
,
2012
, “
A New Device for Performing Reference Point Indentation Without a Reference Probe
,”
Rev. Sci. Instrum.
,
83
(
4
), p.
044301
.10.1063/1.3693085
10.
Guerri-Fernandez
,
R. C.
,
Nogues
,
X.
,
Quesada Gomez
,
J. M.
,
Torres Del Pliego
,
E.
,
Puig
,
L.
,
Garcia-Giralt
,
N.
,
Yoskovitz
,
G.
,
Mellibovsky
,
L.
,
Hansma
,
P. K.
, and
Diez-Perez
,
A.
,
2013
, “
Microindentation for In Vivo Measurement of Bone Tissue Material Properties in Atypical Femoral Fracture Patients and Controls
,”
J. Bone Miner. Res.
,
28
(
1
), pp.
162
168
.10.1002/jbmr.1731
11.
Randall
,
C.
,
Bridges
,
D.
,
Guerri
,
R.
,
Nogues
,
X.
,
Puig
,
L.
,
Torres
,
E.
,
Mellibovsky
,
L.
,
Hoffseth
,
K.
,
Stalbaum
,
T.
,
Srikanth
,
A.
,
Weaver
,
J. C.
,
Rosen
,
S.
,
Barnard
,
H.
,
Brimer
,
D.
,
Proctor
,
A.
,
Candy
,
J.
,
Saldana
,
C.
,
Chandrasekar
,
S.
,
Lescun
,
T.
,
Nielson
,
C. M.
,
Orwoll
,
E.
,
Herthel
,
D.
,
Kopeikin
,
H.
,
Yang
,
H. T.
,
Farr
,
J. N.
,
McCready
,
L.
,
Khosla
,
S.
,
Diez-Perez
,
A.
, and
Hansma
,
P. K.
,
2013
, “
Applications of a New Handheld Reference Point Indentation Instrument Measuring Bone Material Strength
,”
ASME J. Med. Devices
,
7
(
4
), p.
410051
.10.1115/1.4024829
12.
Liu
,
X.
,
Wang
,
X.
, and
Niebur
,
G. L.
,
2003
, “
Effects of Damage on the Orthotropic Material Symmetry of Bovine Tibial Trabecular Bone
,”
J. Biomech.
,
36
(
12
), pp.
1753
1759
.10.1016/S0021-9290(03)00217-3
13.
Diab
,
T.
,
Condon
,
K. W.
,
Burr
,
D. B.
, and
Vashishth
,
D.
,
2006
, “
Age-Related Change in the Damage Morphology of Human Cortical Bone and Its Role in Bone Fragility
,”
Bone
,
38
(
3
), pp.
427
431
.10.1016/j.bone.2005.09.002
14.
Diab
,
T.
, and
Vashishth
,
D.
,
2005
, “
Effects of Damage Morphology on Cortical Bone Fragility
,”
Bone
,
37
(
1
), pp.
96
102
.10.1016/j.bone.2005.03.014
15.
Vashishth
,
D.
,
Koontz
,
J.
,
Qiu
,
S. J.
,
Lundin-Cannon
,
D.
,
Yeni
,
Y. N.
,
Schaffler
,
M. B.
, and
Fyhrie
,
D. P.
,
2000
, “
In Vivo Diffuse Damage in Human Vertebral Trabecular Bone
,”
Bone
,
26
(
2
), pp.
147
152
.10.1016/S8756-3282(99)00253-7
16.
Fyhrie
,
D. P.
, and
Schaffler
,
M. B.
,
1994
, “
Failure Mechanisms in Human Vertebral Cancellous Bone
,”
Bone
,
15
(
1
), pp.
105
109
.10.1016/8756-3282(94)90900-8
17.
Arthur Moore
,
T. L.
, and
Gibson
,
L. J.
,
2002
, “
Microdamage Accumulation in Bovine Trabecular Bone in Uniaxial Compression
,”
ASME J. Biomech. Eng.
,
124
(
1
), pp.
63
71
.10.1115/1.1428745
18.
Moore
,
T. L.
, and
Gibson
,
L. J.
,
2001
, “
Modeling Modulus Reduction in Bovine Trabecular Bone Damaged in Compression
,”
ASME J. Biomech. Eng.
,
123
(
6
), pp.
613
622
.10.1115/1.1407828
19.
Vajjhala
,
S.
,
Kraynik
,
A. M.
, and
Gibson
,
L. J.
,
2000
, “
A Cellular Solid Model for Modulus Reduction Due to Resorption of Trabeculae in Bone
,”
ASME J. Biomech. Eng.
,
122
(
5
), pp.
511
515
.10.1115/1.1289996
20.
Follet
,
H.
,
Bruyere-Garnier
,
K.
,
Peyrin
,
F.
,
Roux
,
J. P.
,
Arlot
,
M. E.
,
Burt-Pichat
,
B.
,
Rumelhart
,
C.
, and
Meunier
,
P. J.
,
2005
, “
Relationship Between Compressive Properties of Human OS Calcis Cancellous Bone and Microarchitecture Assessed From 2D and 3D Synchrotron Microtomography
,”
Bone
,
36
(
2
), pp.
340
351
.10.1016/j.bone.2004.10.011
21.
Kabel
,
J.
,
Odgaard
,
A.
,
van Rietbergen
,
B.
, and
Huiskes
,
R.
,
1999
, “
Connectivity and the Elastic Properties of Cancellous Bone
,”
Bone
,
24
(
2
), pp.
115
120
.10.1016/S8756-3282(98)00164-1
22.
Odgaard
,
A.
, and
Gundersen
,
H. J.
,
1993
, “
Quantification of Connectivity in Cancellous Bone, With Special Emphasis on 3-D Reconstructions
,”
Bone
,
14
(
2
), pp.
173
182
.10.1016/8756-3282(93)90245-6
23.
Doube
,
M.
,
Klosowski
,
M. M.
,
Arganda-Carreras
,
I.
,
Cordelieres
,
F. P.
,
Dougherty
,
R. P.
,
Jackson
,
J. S.
,
Schmid
,
B.
,
Hutchinson
,
J. R.
, and
Shefelbine
,
S. J.
,
2010
, “
BoneJ: Free and Extensible Bone Image Analysis in ImageJ
,”
Bone
,
47
(
6
), pp.
1076
1079
.10.1016/j.bone.2010.08.023
24.
Larsen
,
L. G.
,
Choi
,
J.
,
Nungesser
,
M. K.
, and
Harvey
,
J. W.
,
2012
, “
Directional Connectivity in Hydrology and Ecology
,”
Ecol. Appl
,
22
(
8
), pp.
2204
2220
.10.1890/11-1948.1
25.
Hou
,
F. J.
,
Lang
,
S. M.
,
Hoshaw
,
S. J.
,
Reimann
,
D. A.
, and
Fyhrie
,
D. P.
,
1998
, “
Human Vertebral Body Apparent and Hard Tissue Stiffness
,”
J. Biomech.
,
31
(
11
), pp.
1009
1015
.10.1016/S0021-9290(98)00110-9
26.
Fyhrie
,
D. P.
,
Lang
,
S. M.
,
Hoshaw
,
S. J.
,
Schaffler
,
M. B.
, and
Kuo
,
R. F.
,
1995
, “
Human Vertebral Cancellous Bone Surface Distribution
,”
Bone
,
17
(
3
), pp.
287
291
.10.1016/8756-3282(95)00218-3
You do not currently have access to this content.