Trabecular bone is a crucial and unique load-bearing tissue in the skeleton found near the ends of long bones and in the vertebral bodies. Trabecular bone has the ability to rapidly adapt to the mechanical loading environment by optimizing its mass and structure in order to bear high loads with as little bone tissue as possible, allowing bones to remain strong while minimizing their weight. Measuring the load-bearing capacity of trabecular bone is crucial for assessing fracture risk, since osteoporotic fractures most often occur at skeletal sites primarily consisting of trabecular bone. However, the unique porous, heterogeneous, and anisotropic structure of trabecular bone makes quantification of its material properties technically difficult. Advances in the ability to determine trabecular bone strength therefore have the potential to drastically improve the diagnosis of fracture risk. Additionally, studying the adaptation of trabecular bone to the mechanical loading environment may...

References

References
1.
Oftadeh
,
R.
,
Perez-Viloria
,
M.
,
Villa-Camacho
,
J.
,
Vaziri
,
A.
, and
Nazarian
,
A.
,
2014
, “
Biomechanics and Mechanobiology of Trabecular Bone: A Review
,”
ASME J. Biomech. Eng.
(in press).10.1115/1.4029167
2.
Metzger
,
T. A.
,
Kreipke
,
T. C.
,
Vaughan
,
T. J.
,
McNamara
,
L.
, and
Niebur
,
G. L.
,
2014
, “
The In Situ Mechanics of Trabecular Bone Marrow: The Potential for Mechanobiological Response
,”
ASME J. Biomech. Eng.
(in press).10.1115/1.4028985
3.
Vaughan
,
T. J.
,
Voisin
,
M.
,
Niebur
,
G. L.
, and
McNamara
,
L.
,
2014
, “
Multiscale Modeling of Trabecular Bone Marrow: Understanding the Micromechanical Environment of Mesenchymal Stem Cells During Osteoporosis
,”
ASME J. Biomech. Eng.
(in press).10.1115/1.4028986
4.
Banijamali
,
S. M. A.
,
Oftadeh
,
R.
,
Nazarian
,
A.
,
Goebel
,
R.
,
Vaziri
,
A.
, and
Nayeb-Hashemi
,
H.
,
2014
, “
Effects of Different Loading Patterns on the Trabecular Bone Morphology of the Proximal Femur Using Adaptive Bone Remodeling
,”
ASME J. Biomech. Eng.
(in press). 10.1115/1.4029059
5.
Altman
,
A. R.
,
de Bakker
,
C. M. J.
,
Tseng
,
W. J.
,
Chandra
,
A.
,
Qin
,
L.
, and
Liu
,
X. S.
,
2014
, “
Enhanced Individual Trabecular Repair and Its Mechanical Implication in PTH and Alendronate Treated Rat Tibial Bone
,”
ASME J. Biomech. Eng.
(in press). 10.1115/1.4028823
6.
Cardoso
,
L.
, and
Schaffler
,
M. B.
,
2014
, “
Changes of Elastic Constants and Anisotropy Patterns in Trabecular Bone During Disuse-Induced Bone Loss Assess by Poroelastic Ultrasound
,”
ASME J. Biomech. Eng.
(in press). 10.1115/1.4029179
7.
Bhatia
,
V. A.
,
Edwards
,
W. B.
,
Johnson
,
J. E.
, and
Troy
,
K. L.
,
2014
, “
Short-Term Bone Formation is Greatest Within High Strain Regions of the Human Distal Radius: A Prospective Pilot Study
,”
ASME J. Biomech. Eng.
(in press). 10.1115/1.4028847
8.
Christiansen
,
B. A.
,
Emami
,
A. J.
,
Fyhrie
,
D. P.
,
Satkunananthan
,
P. B.
, and
Hardisty
,
M. R.
,
2014
, “
Trabecular Bone Loss at a Distant Skeletal Site Following Non-Invasive Knee Injury in Mice
,”
ASME J. Biomech. Eng.
(in press). 10.1115/1.4028824
9.
Lloyd
,
A. A.
,
Wang
,
Z. X.
, and
Donnelly
,
E.
,
2014
, “
Multiscale Contribution of Bone Tissue Material Property Heterogeneity to Trabecular Bone Mechanical Behavior
,”
ASME J. Biomech. Eng.
(in press). 10.1115/1.4029046
10.
Kaynia
,
N.
,
Soohoo
,
E.
,
Keaveny
,
T. M.
, and
Kazakia
,
G. J.
,
2014
, “
Effect of Intra-Specimen Spatial Variation in Tissue Mineral Density on the Apparent Stiffness of Trabecular Bone
,”
ASME J. Biomech. Eng.
(in press).10.1115/1.4029178
11.
Zwahlen
,
A.
,
Christen
,
D.
,
Ruffoni
,
D.
,
Schneider
,
P.
,
Schmölz
,
W.
, and
Mueller
,
R.
,
2014
, “
Inverse Finite Element Modelling for Characterization of Local Elastic Properties in Image-Guided Failure Assessment of Human Trabecular Bone
,”
ASME J. Biomech. Eng.
(in press). 10.1115/1.4028991
12.
Panyasantisuk
,
J.
,
Pahr
,
D. H.
,
Gross
,
T.
, and
Zysset
,
P. K.
,
2014
, “
Comparison of Mixed and Kinematic Uniform Boundary Conditions in Homogenized Elasticity of Femoral Trabecular Bone Using Micro Finite Element Analyses
,”
ASME J. Biomech. Eng.
(in press). 10.1115/1.4028968
13.
Fyhrie
,
D. P.
, and
Zauel
,
R.
,
2014
, “
Directional Tortuosity as a Predictor of Modulus Damage for Vertebral Canellous Bone
,”
ASME J. Biomech. Eng.
(in press). 10.1115/1.4029167
You do not currently have access to this content.