Rodent models of acute spinal cord injury (SCI) are often used to investigate the effects of injury mechanism, injury speed, and cord displacement magnitude, on the ensuing cascade of biological damage in the cord. However, due to its small size, experimental observations have largely been limited to the gross response of the cord. To properly understand the relationship between mechanical stimulus and biological damage, more information is needed about how the constituent tissues of the cord (i.e., gray and white matter) respond to injurious stimuli. To address this limitation, we developed a novel magnetic resonance imaging (MRI)-compatible test apparatus that can impose either a contusion-type or dislocation-type acute cervical SCI in a rodent model and facilitate MR-imaging of the cervical spinal cord in a 7 T MR scanner. In this study, we present the experimental performance parameters of the MR rig. Utilizing cadaveric specimens and static radiographs, we report contusion magnitude accuracy that for a desired 1.8 mm injury, a nominal 1.78 mm injury (SD = 0.12 mm) was achieved. High-speed video analysis was employed to determine the injury speeds for both mechanisms and were found to be 1147 mm/s (SD = 240 mm/s) and 184 mm/s (SD = 101 mm/s) for contusion and dislocation injuries, respectively. Furthermore, we present qualitative pilot data from a cadaveric trial, employing the MR rig, to show the expected results from future studies.

References

References
1.
Choo
,
A. M.
,
Liu
,
J.
,
Lam
,
C. K.
,
Dvorak
,
M.
,
Tetzlaff
,
W.
, and
Oxland
,
T. R.
,
2007
, “
Contusion, Dislocation, and Distraction: Primary Hemorrhage and Membrane Permeability in Distinct Mechanisms of Spinal Cord Injury
,”
J. Neurosurg.: Spine
,
6
(
3
), pp.
255
266
.10.3171/spi.2007.6.3.255
2.
Fiford
,
R. J.
, and
Bilston
,
L. E.
,
2005
, “
The Mechanical Properties of Rat Spinal Cord in vitro
,”
J. Biomech.
,
38
(
7
), pp.
1509
1515
.10.1016/j.jbiomech.2004.07.009
3.
Maikos
,
J. T.
, and
Shreiber
,
D. I.
,
2007
, “
Immediate Damage to the Blood-Spinal Cord Barrier Due to Mechanical Trauma
,”
J. Neurotrauma
,
24
(
3
), pp.
492
507
.10.1089/neu.2006.0149
4.
Maikos
,
J. T.
,
Qian
,
Z.
,
Metaxas
,
D.
, and
Shreiber
,
D. I.
,
2008
, “
Finite Element Analysis of Spinal Cord Injury in the Rat
,”
J. Neurotrauma
,
25
(
7
), pp.
795
816
.10.1089/neu.2007.0423
5.
Choo
,
A. M.
,
Liu
,
J.
,
Liu
,
Z.
,
Dvorak
,
M.
,
Tetzlaff
,
W.
, and
Oxland
,
T. R.
,
2009
, “
Modeling Spinal Cord Contusion, Dislocation, and Distraction: Characterization of Vertebral Clamps, Injury Severities, and Node of Ranvier Deformations
,”
J. Neurosci. Methods
,
181
(
1
), pp.
6
17
.10.1016/j.jneumeth.2009.04.007
6.
Scheff
,
S. W.
,
Rabchevsky
,
A. G.
,
Fogaccia
,
I.
,
Main
,
J. A.
, and
Lumpp
,
J. E.
, Jr.
,
2003
, “
Experimental Modeling of Spinal Cord Injury: Characterization of a Force-Defined Injury Device
,”
J. Neurotrauma
,
20
(
2
), pp.
179
193
.10.1089/08977150360547099
7.
Gruner
,
J. A.
,
1992
, “
A Monitored Contusion Model of Spinal Cord Injury in the Rat
,”
J. Neurotrauma
,
9
(
2
), pp.
123
126
.10.1089/neu.1992.9.123
8.
Noyes
,
D. H.
,
1987
, “
Electromechanical Impactor for Producing Experimental Spinal Cord Injury in Animals
,”
Med. Biol. Eng. Comput.
,
25
(
3
), pp.
335
340
.10.1007/BF02447434
9.
Kearney
,
P. A.
,
Ridella
,
S. A.
,
Viano
,
D. C.
, and
Anderson
,
T. E.
,
1988
, “
Interaction of Contact Velocity and Cord Compression in Determining the Severity of Spinal Cord Injury
,”
J. Neurotrauma
,
5
(
3
), pp.
187
208
.10.1089/neu.1988.5.187
10.
Sparrey
,
C. J.
,
Choo
,
A. M.
,
Liu
,
J.
,
Tetzlaff
,
W.
, and
Oxland
,
T. R.
,
2008
, “
The Distribution of Tissue Damage in the Spinal Cord is Influenced by the Contusion Velocity
,”
Spine
,
33
(
22
), pp.
E812
E819
.10.1097/BRS.0b013e3181894fd3
11.
Jin
,
X.
,
Lee
,
J. B.
,
Leung
,
L. Y.
,
Zhang
,
L.
,
Yang
,
K. H.
, and
King
,
A. I.
,
2006
, “
Biomechanical Response of the Bovine Pia-Arachnoid Complex to Tensile Loading at Varying Strain-Rates
,” Stapp Car Crash J.,
50
, pp.
637
649
.
12.
Maikos
,
J. T.
,
Elias
,
R. A.
, and
Shreiber
,
D. I.
,
2008
, “
Mechanical Properties of Dura Mater From the Rat Brain and Spinal Cord
,”
J. Neurotrauma
,
25
(
1
), pp.
38
51
.10.1089/neu.2007.0348
13.
Ozawa
,
H.
,
Matsumoto
,
T.
,
Ohashi
,
T.
,
Sato
,
M.
, and
Kokubun
,
S.
,
2004
, “
Mechanical Properties and Function of the Spinal Pia Mater
,”
J. Neurosurg.: Spine
,
1
(
1
), pp.
122
127
.10.3171/spi.2004.1.1.0122
14.
Ichihara
,
K.
,
Taguchi
,
T.
,
Shimada
,
Y.
,
Sakuramoto
,
I.
,
Kawano
,
S.
, and
Kawai
,
S.
,
2001
, “
Gray Matter of the Bovine Cervical Spinal Cord is Mechanically More Rigid and Fragile Than the White Matter
,”
J. Neurotrauma
,
18
(
3
), pp.
361
367
.10.1089/08977150151071053
15.
Ichihara
,
K.
,
Taguchi
,
T.
,
Sakuramoto
,
I.
,
Kawano
,
S.
, and
Kawai
,
S.
,
2003
, “
Mechanism of the Spinal Cord Injury and the Cervical Spondylotic Myelopathy: New Approach Based on the Mechanical Features of the Spinal Cord White and Gray Matter
,”
J. Neurosurgery
,
99
(
3
), pp.
278
285
.10.3171/spi.2003.99.3.0278
16.
Ozawa
,
H.
,
Matsumoto
,
T.
,
Ohashi
,
T.
,
Sato
,
M.
, and
Kokubun
,
S.
,
2001
, “
Comparison of Spinal Cord Gray Matter and White Matter Softness: Measurement by Pipette Aspiration Method
,”
J. Neurosurg.
,
95
(
2
), pp.
221
224
.10.3171/spi.2001.95.2.0221
17.
Greaves
,
C. Y.
,
Gadala
,
M. S.
, and
Oxland
,
T. R.
,
2008
, “
A Three-Dimensional Finite Element Model of the Cervical Spine With Spinal Cord: An Investigation of Three Injury Mechanisms
,”
Ann. Biomed. Eng.
,
36
(
3
), pp.
396
405
.10.1007/s10439-008-9440-0
18.
Russell
,
C. M.
,
Choo
,
A. M.
,
Tetzlaff
,
W.
,
Chung
,
T. E.
, and
Oxland
,
T. R.
,
2012
, “
Maximum Principal Strain Correlates With Spinal Cord Tissue Damage in Contusion and Dislocation Injuries in the Rat Cervical Spine
,”
J. Neurotrauma
,
29
(
8
), pp.
1574
1585
.10.1089/neu.2011.2225
19.
Bilston
,
L. E.
, and
Thibeault
,
L. E.
,
1996
, “
The Mechanical Properties of the Human Spinal Cord in vitro
,”
Ann. Biomed. Eng.
,
24
, pp.
67
74
.10.1007/BF02770996
20.
Cheng
,
S.
,
Clarke
,
E. C.
, and
Bilston
,
L. E.
,
2008
, “
Rheological Properties of the Tissues of the Central Nervous System: A Review
,”
Med. Eng. Phys.
,
30
, pp.
1318
1337
.10.1016/j.medengphy.2008.06.003
21.
Sparrey
,
C. J.
, and
Keaveny
,
T. M.
,
2011
, “
Compression Behavior of Porcine Spinal Cord White Matter
,”
J. Biomech.
,
44
, pp.
1078
1082
.10.1016/j.jbiomech.2011.01.035
22.
Sparrey
,
C. J.
,
Manley
,
G. T.
, and
Keaveny
,
T. M.
,
2009
, “
Effects of White, Grey, and Pia Mater Properties on Tissue Level Stresses and Strains in the Compressed Spinal Cord
,”
J. Neurotrauma
,
26
(
4
), pp.
585
595
.10.1089/neu.2008.0654
23.
Cheran
,
S.
,
Shanmuganathan
,
K.
,
Zhuo
,
J.
,
Mirvis
,
S. E.
,
Aarabi
,
B.
,
Alexander
,
M. T.
, and
Gullapalli
,
R. P.
,
2011
, “
Correlation of MR Diffusion Tensor Imaging Parameters With ASIA Motor Scores in Hemorrhagic and Nonhemorrhagic Acute Spinal Cord Injury
,”
J. Neurotrauma
,
28
(
9
), pp.
1881
1892
.10.1089/neu.2010.1741
24.
Fehlings
,
M. G.
,
Cadotte
,
D. W.
, and
Fehlings
,
L. N.
,
2011
, “
A Series of Systematic Reviews on the Treatment of Acute Spinal Cord Injury: A Foundation for Best Medical Practice
,”
J. Neurotrauma
,
28
(
8
), pp.
1329
1333
.10.1089/neu.2011.1955
25.
Parashari
,
U. C.
,
Khanduri
,
S.
,
Bhadury
,
S.
,
Kohli
,
N.
,
Parihar
,
A.
,
Singh
,
R.
,
Srivastava
,
R. N.
, and
Upadhyay
,
D.
,
2011
, “
Diagnostic and Prognostic Role of MRI in Spinal Trauma, its Comparison and Correlation With Clinical Profile and Neurological Outcome, According to ASIA Impairment Scale
,”
J. Craniovertebr. Junction Spine
,
2
(
1
), pp.
17
26
.10.4103/0974-8237.85309
26.
Ellingson
,
B. M.
,
Schmit
,
B. D.
, and
Kurpad
,
S. N.
,
2010
, “
Lesion Growth and Degeneration Patterns Measured Using Diffusion Tensor 9.4-T Magnetic Resonance Imaging in Rat Spinal Cord Injury
,”
J. Neurosurg.: Spine
,
13
(
2
), pp.
181
192
.10.3171/2010.3.SPINE09523
27.
Gonzalez-Lara
,
L. E.
,
Xu
,
X.
,
Hofstretova
,
K.
,
Pniak
,
A.
,
Brown
,
A.
, and
Foster
,
P. J.
,
2009
, “
In vivo Magnetic Resonance Imaging of Spinal Cord Injury in the Mouse
,”
J. Neurotrauma
,
26
(
5
), pp.
753
762
.10.1089/neu.2008.0704
28.
Kim
,
J. H.
,
Loy
,
D. N.
,
Wang
,
Q.
,
Budde
,
M. D.
,
Schmidt
,
R. E.
,
Trinkaus
,
K.
, and
Song
,
S. K.
,
2010
, “
Diffusion Tensor Imaging at 3 Hours After Traumatic Spinal Cord Injury Predicts Long-Term Locomotor Recovery
,”
J. Neurotrauma
,
27
(
3
), pp.
587
598
.10.1089/neu.2009.1063
29.
Kozlowski
,
P.
,
Raj
,
D.
,
Liu
,
J.
,
Lam
,
C.
,
Yung
,
A. C.
, and
Tetzlaff
,
W.
,
2008
, “
Characterizing White Matter Damage in Rat Spinal Cord With Quantitative MRI and Histology
,”
J. Neurotrauma
,
25
(
6
), pp.
653
676
.10.1089/neu.2007.0462
30.
Yung
,
A. C.
, and
Kozlowski
,
P.
,
2007
, “
Signal-to-Noise Ratio Comparison of Phased-Array vs. Implantable Coil for Rat Spinal Cord MRI
,”
Magn. Reson. Imaging
,
25
(
8
), pp.
1215
1221
.10.1016/j.mri.2007.01.006
31.
Kurtz
,
S. M.
, and
Devine
,
J. N.
,
2007
, “
PEEK Biomaterials in Trauma, Orthopedic, and Spinal Implants
,”
Biomaterials
,
28
(
32
), pp.
4845
4869
.10.1016/j.biomaterials.2007.07.013
You do not currently have access to this content.