Despite development of accurate musculoskeletal models for human lumbar spine, the methods for prediction of muscle activity patterns in movements lack proper association with corresponding sensorimotor integrations. This paper uses the directional information of the Jacobian of the musculoskeletal system to orchestrate adaptive critic-based fuzzy neural controller modules for controlling a complex nonlinear redundant musculoskeletal system. The proposed controller is used to control a 3D 3-degree of freedom (DOF) musculoskeletal model of trunk, actuated by 18 muscles. The controller is capable of learning to control from sensory information, without relying on pre-assumed model parameters. Simulation results show satisfactory tracking of movements and the simulated muscle activation patterns conform to previous EMG experiments and optimization studies. The proposed controller can be used as a computationally inexpensive muscle activity generator to distinguish between neural and mechanical contributions to movement and for study of sensory versus motor origins of motor function and dysfunction in human spine.

References

References
1.
Reeves
,
N. P.
, and
Cholewicki
,
J.
,
2003
, “
Modeling the Human Lumbar Spine for Assessing Spinal Loads, Stability, and Risk of Injury
,”
Crit. Rev. Biomed. Eng
,
31
(
1–2
), pp.
73
139
.10.1615/CritRevBiomedEng.v31.i12.30
2.
Mousavi
,
S. J.
,
Olyaei
,
G. R.
,
Talebian
,
S.
,
Sanjari
,
M. A.
, and
Parnianpour
,
M.
,
2009
, “
The Effect of Angle and Level of Exertion on Trunk Neuromuscular Performance During Multidirectional Isometric Activities
,”
Spine
,
34
(
5
), pp.
E170
E177
.10.1097/BRS.0b013e31818aec05
3.
Larivière
,
C.
,
Gagnon
,
D.
, and
Loisel
,
P.
,
2000
, “
The Comparison of Trunk Muscles EMG Activation Between Subjects With and Without Chronic Low Back Pain During Flexion–Extension and Lateral Bending Tasks
,”
J. Electromyogr. Kinesiol.
,
10
(
2
), pp.
79
91
.10.1016/S1050-6411(99)00027-9
4.
Ebenbichler
,
G. R.
,
Oddsson
,
L. I.
,
Kollmitzer
,
J.
, and
Erim
,
Z.
,
2001
, “
Sensory-Motor Control of the Lower Back: Implications for Rehabilitation
,”
Med. Sci. Sports Exercise
,
33
(
11
), pp.
1889
1898
.10.1097/00005768-200111000-00014
5.
Rashedi
,
E.
,
Khalaf
,
K.
,
Nassajian
,
M. R.
,
Nasseroleslami
,
B.
, and
Parnianpour
,
M.
,
2010
, “
How Does the Central Nervous System Address the Kinetic Redundancy in the Lumbar Spine? Three-Dimensional Isometric Exertions With 18 Hill-Model-Based Muscle Fascicles at the L4–L5 Level
,”
Proc. Inst. Mech. Eng., Part H
,
224
(
3
), pp.
487
501
.10.1243/09544119JEIM668
6.
Zeinali-Davarani
,
S.
,
Hemami
,
H.
,
Barin
,
K.
,
Shirazi-Adl
,
A.
, and
Parnianpour
,
M.
,
2008
, “
Dynamic Stability of Spine Using Stability-Based Optimization and Muscle Spindle Reflex
,”
IEEE Trans. Neural Syst. Rehabil. Eng.
,
16
(
1
), pp.
106
118
.10.1109/TNSRE.2007.906963
7.
Li
,
G.
,
Kaufman
,
K. R.
,
Chao
,
E. Y.
, and
Rubash
,
H. E.
,
1999
, “
Prediction of Antagonistic Muscle Forces Using Inverse Dynamic Optimization During Flexion/Extension of the Knee
,”
J. Biomech. Eng.
,
121
(
3
), pp.
316
322
.10.1115/1.2798327
8.
Amarantini
,
D.
,
Rao
,
G.
, and
Berton
,
E.
,
2010
, “
A Two-Step EMG-and-Optimization Process to Estimate Muscle Force During Dynamic Movement
,”
J. Biomech.
,
43
(
9
), pp.
1827
1830
.10.1016/j.jbiomech.2010.02.025
9.
Hou
,
Y.
,
Zurada
,
J. M.
,
Karwowski
,
W.
,
Marras
,
W. S.
, and
Davis
,
K.
,
2007
, “
Estimation of the Dynamic Spinal Forces Using a Recurrent Fuzzy Neural Network
,”
IEEE Trans. Syst. Man Cybern., Part B: Cybern.
,
37
(
1
), pp.
100
109
.10.1109/TSMCB.2006.881298
10.
Lee
,
W.
,
Karwowski
,
W.
,
Marras
,
W. S.
, and
Rodrick
,
D.
,
2003
, “
A Neuro-Fuzzy Model for Estimating Electromyographical Activity of Trunk Muscles Due to Manual Lifting
,”
Ergonomics
,
46
(
1–3
), pp.
285
309
.10.1080/00140130303520
11.
Thelen
,
D. G.
,
Anderson
,
F. C.
, and
Delp
,
S. L.
,
2003
, “
Generating Dynamic Simulations of Movement Using Computed Muscle Control
,”
J. Biomech.
,
36
(
3
), pp.
321
328
.10.1016/S0021-9290(02)00432-3
12.
Nussbaum
,
M. A.
,
Chaffin
,
D. B.
, and
Martin
,
B. J.
,
1995
, “
A Back-Propagation Neural Network Model of Lumbar Muscle Recruitment During Moderate Static Exertions
,”
J. Biomech.
,
28
(
9
), pp.
1015
1024
.10.1016/0021-9290(94)00171-Y
13.
Nussbaum
,
M. A.
, and
Chaffin
,
N. B.
,
1996
, “
Evaluation of Artificial Neural Network Modelling to Predict Torso Muscle Activity
,”
Ergonomics
,
39
(
12
), pp.
1430
1444
.10.1080/00140139608964562
14.
Nussbaum
,
M. A.
,
Martin
,
B. J.
, and
Chaffin
,
D. B.
,
1997
, “
A Neural Network Model for Simulation of Torso Muscle Coordination
,”
J. Biomech.
,
30
(
3
), pp.
251
258
.10.1016/S0021-9290(96)00138-8
15.
Arjmand
,
N.
, and
Shirazi-Adl
,
A.
,
2006
, “
Model and in Vivo Studies on Human Trunk Load Partitioning and Stability in Isometric Forward Flexions
,”
J. Biomech.
,
39
(
3
), pp.
510
521
.10.1016/j.jbiomech.2004.11.030
16.
Shadmehr
,
R.
, and
Wise
,
S. P.
,
2005
,
The Computational Neurobiology of Reaching and Pointing: A Foundation for Motor Learning
,
MIT Press
,
Cambridge, MA
.
17.
Jordan
,
M. I.
, and
Wolpert
,
D. M.
,
1999
, “
Computational Motor Control
,”
The Cognitive Neuroscience
,
M.
Gazzaniga
, ed.,
MIT Press
,
Cambridge, MA
, pp.
601
620
.
18.
Li
,
W.
,
2006
,
Optimal Control for Biological Movement Systems
,
Ph.D. thesis, University of California
,
San Diego
, CA.
19.
Nelson
,
W. L.
,
1983
, “
Physical Principles for Economies of Skilled Movements
,”
Biol. Cybern.
,
46
(
2
), pp.
135
147
.10.1007/BF00339982
20.
Todorov
,
E.
,
2005
, “
Stochastic Optimal Control and Estimation Methods Adapted to the Noise Characteristics of the Sensorimotor System
,”
Neural Comput.
,
17
(
5
), pp.
1084
1108
.10.1162/0899766053491887
21.
Arbib
,
M. A.
,
2003
,
The Handbook of Brain Theory and Neural Networks
,
MIT Press
,
Cambridge, MA
.
22.
Kim
,
J.
, and
Hemami
,
H.
,
1998
, “
Coordinated Three-Dimensional Motion of the Head and Torso by Dynamic Neural Networks
,”
IEEE Trans. Syst. Man Cybern., Part B: Cybern.
,
28
(
5
), pp.
653
666
.10.1109/3477.718516
23.
Pomero
,
V.
,
Lavaste
,
F.
,
Imbert
,
G.
, and
Skalli
,
W.
,
2004
, “
A Proprioception Based Regulation Model to Estimate the Trunk Muscle Forces
,”
Comput. Methods Biomech. Biomed. Eng.
,
7
(
6
), pp.
331
338
.10.1080/1025584042000327115
24.
Perez
,
M. A.
,
1999
, “
Empirical Evaluation of Models Used to Predict Torso Muscle Recruitment Patterns
,” M.Sc. thesis, Virginia Polytechnic Institute and State University, Blacksburg, VA.
25.
Ross
,
E. C.
,
1991
,
The Effect of Resistance Level on Muscle Coordination Patterns and Truncal Velocity, Acceleration, and Deceleration During Isoinertial Trunk Extension
,
Ph.D. thesis, New York University
, New York.
26.
Ross
,
E. C.
,
Parnianpour
,
M.
, and
Martin
,
D.
,
1993
, “
The Effects of Resistance Level on Muscle Coordination Patterns and Movement Profile During Trunk Extension
,”
Spine
,
18
(
13
), pp.
1829
1838
.10.1097/00007632-199310000-00019
27.
Hemami
,
H.
,
2002
, “
Towards a Compact and Computer-Adapted Formulation of the Dynamics and Stability of Multi Rigid Body Systems
,”
J. Autom. Control
,
12
(
1
), pp.
64
70
.10.2298/JAC0201064H
28.
Schultz
,
A. B.
,
Andersson
,
G. B. J.
,
Haderspeck
,
K.
,
Ortengren
,
R.
,
Nordin
,
M.
, and
Bjork
,
R.
,
1982
, “
Analysis and Measurement of Lumbar Trunk Loads in Tasks Involving Bends and Twists
,”
J. Biomech.
,
15
(
9
), pp.
669
675
.10.1016/0021-9290(82)90021-5
29.
Zajac
,
F. E.
,
1989
, “
Muscle and Tendon: Properties, Models, Scaling, and Application to Biomechanics and Motor Control
,”
Crit. Rev. Biomed. Eng.
,
17
(
4
), pp.
359
411
.
30.
Cholewicki
,
J.
, and
McGill
,
S. M.
,
1996
, “
Mechanical Stability of the in Vivo Lumbar Spine: Implications for Injury and Chronic Low Back Pain
,”
Clin. Biomech. (Bristol Avon)
,
11
(
1
), pp.
1
15
.10.1016/0268-0033(95)00035-6
31.
McGill
,
S. M.
, and
Norman
,
R. W.
,
1986
, “
Partitioning of the L4-L5 Dynamic Moment Into Disc, Ligamentous, and Muscular Components During Lifting
,”
Spine
,
11
(
7
), pp.
666
678
.10.1097/00007632-198609000-00004
32.
Nussbaum
,
M. A.
, and
Chaffin
,
D. B.
,
1998
, “
Lumbar Muscle Force Estimation Using a Subject-Invariant 5-Parameter EMG-Based Model
,”
J. Biomech.
,
31
(
7
), pp.
667
672
.10.1016/S0021-9290(98)00055-4
33.
Hatze
,
H.
,
1977
, “
A Myocybernetic Control Model of Skeletal Muscle
,”
Biol. Cybern.
,
25
(
2
), pp.
103
119
.10.1007/BF00337268
34.
Cheng
,
E. J.
,
Brown
,
I. E.
, and
Loeb
,
G. E.
,
2000
, “
Virtual Muscle: A Computational Approach to Understanding the Effects of Muscle Properties on Motor Control
,”
J. Neurosci. Methods
,
101
(
2
), pp.
117
130
.10.1016/S0165-0270(00)00258-2
35.
Van Herp
,
G.
,
Rowe
,
P.
,
Salter
,
P.
, and
Paul
,
J. P.
,
2000
, “
Three-Dimensional Lumbar Spinal Kinematics: A Study of Range of Movement in 100 Healthy Subjects Aged 20 to 60+ Years
,”
Rheumatology
,
39
(
12
), pp.
1337
1340
.10.1093/rheumatology/39.12.1337
36.
Jazbi
,
S. A.
,
Marjovi
,
A.
,
Lucas
,
C.
, and
Ghafoorifard
,
M. H.
,
1998
, “
Critic Based Adaptive Fuzzy Controller for SRM
,”
Proceedings of 5th International Conference on Soft Computing and Information/Intelligent Systems
. Vol.
2
, Oct. 16–20, World Scientific, pp.
692
695
.
37.
Abdi
,
J.
,
Khalili
,
G. F.
,
Fatourechi
,
M.
,
Lucas
,
C.
, and
Khaki Sedigh
,
A.
,
2004
, “
Control of Multivariable Systems Based on Emotional Temporal Difference Learning Controller
,”
Int. J. Eng. Trans. Basics
,
17
(
4
), pp.
363
376
.
38.
Neilson
,
P. D.
, and
Neilson
,
M. D.
,
2005
, “
Motor Maps and Synergies
,”
Hum. Mov. Sci.
,
24
(
5–6
), pp.
774
797
.10.1016/j.humov.2005.09.008
39.
Neilson
,
P. D.
, and
Neilson
,
M. D.
,
2005
, “
An Overview of Adaptive Model Theory: Solving the Problems of Redundancy, Resources, and Nonlinear Interactions in Human Movement Control
,”
J. Neural Eng.
,
2
(
3
), pp.
S279
S312
.10.1088/1741-2560/2/3/S10
40.
Prochazka
,
A.
,
1999
, “
Quantifying Proprioception
,”
Peripheral and Spinal Mechanisms in the Neural Control of Movement
,
M.
Binder
, and
J.
McDonnaugh
, eds.,
Elsevier
,
Amsterdam, NY
, pp.
133
142
.
41.
Dariush
,
B.
,
Parnianpour
,
M.
, and
Hemami
,
H.
,
1998
, “
Stability and a Control Strategy of a Multilink Musculoskeletal Model With Applications in FES
,”
IEEE Trans. Biomed. Eng.
,
45
(
1
), pp.
3
14
.10.1109/10.650346
42.
Haykin
,
S. S.
,
1999
,
Neural Networks: A Comprehensive Foundation
,
Prentice-Hall
,
Upper Saddle River, NJ
.
43.
Oddsson
,
L.
, and
Thorstensson
,
A.
,
1987
, “
Fast Voluntary Trunk Flexion Movements in Standing: Motor Patterns
,”
Acta Physiol. Scand.
,
129
(
1
), pp.
93
106
.10.1111/j.1748-1716.1987.tb08044.x
44.
Sergio
,
L. E.
,
Hamel-Paquet
,
C.
, and
Kalaska
,
J. F.
,
2005
, “
Motor Cortex Neural Correlates of Output Kinematics and Kinetics During Isometric-Force and Arm-Reaching Tasks
,”
J. Neurophysiol.
,
94
(
4
), pp.
2353
2378
.10.1152/jn.00989.2004
45.
Berardelli
,
A.
,
Hallett
,
M.
,
Rothwell
,
J. C.
,
Agostino
,
R.
,
Manfredi
,
M.
,
Thompson
,
P. D.
, and
Marsden
,
C. D.
,
1996
, “
Single-Joint Rapid Arm Movements in Normal Subjects and in Patients With Motor Disorders
,”
Brain
,
119
(
Pt 2
), pp.
661
674
.10.1093/brain/119.2.661
46.
Britton
,
T. C.
,
Thompson
,
P. D.
,
Day
,
B. L.
,
Rothwell
,
J. C.
,
Findley
,
L. J.
, and
Marsden
,
C. D.
,
1994
, “
Rapid Wrist Movements in Patients With Essential Tremor. The Critical Role of the Second Agonist Burst
,”
Brain J. Neurol.
,
117
(
Pt 1
), pp.
39
47
.10.1093/brain/117.1.39
47.
Zatsiorsky
,
V. M.
,
Li
,
Z.-M.
, and
Latash
,
M. L.
,
1998
, “
Coordinated Force Production in Multi-Finger Tasks: Finger Interaction and Neural Network Modeling
,”
Biol. Cybern.
,
79
(
2
), pp.
139
150
.10.1007/s004220050466
48.
Kim
,
J.
, and
Hemami
,
H.
,
1995
, “
Control of a One-Link Arm by Burst Signal Generators
,”
Biol. Cybern.
,
73
(
1
), pp.
37
47
.10.1007/BF00199054
49.
Mussa-Ivaldi
,
F. A.
,
Hogan
,
N.
, and
Bizzi
,
E.
,
1985
, “
Neural, Mechanical, and Geometric Factors Subserving Arm Posture in Humans
,”
J. Neurosci.
,
5
(
10
), pp.
2732
2743
.
50.
Golkhou
,
V.
,
Parnianpour
,
M.
, and
Lucas
,
C.
,
2005
, “
Neuromuscular Control of the Point to Point and Oscillatory Movements of a Sagittal Arm With the Actor-Critic Reinforcement
,”
Comput. Methods Biomech. Biomed. Eng.
,
8
(
2
), pp.
103
113
.10.1080/10255840500167952
51.
McGill
,
S. M.
,
Norman
,
R. W.
, and
Cholewicki
,
J.
,
1996
, “
A Simple Polynomial That Predicts Low-Back Compression During Complex 3-D Tasks
,”
Ergonomics
,
39
(
9
), pp.
1107
1118
.10.1080/00140139608964532
52.
Bazrgari
,
B.
,
Shirazi-Adl
,
A.
,
Trottier
,
M.
, and
Mathieu
,
P.
,
2008
, “
Computation of Trunk Equilibrium and Stability in Free Flexion-Extension Movements at Different Velocities
,”
J. Biomech.
,
41
(
2
), pp.
412
421
.10.1016/j.jbiomech.2007.08.010
53.
Arjmand
,
N.
,
Plamondon
,
A.
,
Shirazi-Adl
,
A.
,
Larivière
,
C.
, and
Parnianpour
,
M.
,
2011
, “
Predictive Equations to Estimate Spinal Loads in Symmetric Lifting Tasks
,”
J. Biomech.
,
44
(
1
), pp.
84
91
.10.1016/j.jbiomech.2010.08.028
54.
Sarti
,
M. A.
,
Lison
,
J. F.
,
Monfort
,
M.
, and
Fuster
,
M. A.
,
2001
, “
Response of the Flexion-Relaxation Phenomenon Relative to the Lumbar Motion to Load and Speed
,”
Spine
,
26
(
18
), pp.
E421
E426
.10.1097/00007632-200109150-00019
This content is only available via PDF.

Article PDF first page preview

Article PDF first page preview
You do not currently have access to this content.