Although blast-induced traumatic brain injury (bTBI) is well recognized for its significance in the military population, the unique mechanisms of primary bTBI remain undefined. Animate models of primary bTBI are critical for determining these potentially unique mechanisms, but the biomechanical characteristics of many bTBI models are poorly understood. In this study, we examine some common shock tube configurations used to study blast-induced brain injury in the laboratory and define the optimal configuration to minimize the effect of torso overpressure and blast-induced head accelerations. Pressure transducers indicated that a customized animal holder successfully reduced peak torso overpressures to safe levels across all tested configurations. However, high speed video imaging acquired during the blast showed significant head accelerations occurred when animals were oriented perpendicular to the shock tube axis. These findings of complex head motions during blast are similar to previous reports [Goldstein et al., 2012, “Chronic Traumatic Encephalopathy in Blast-Exposed Military Veterans and a Blast Neurotrauma Mouse Model,” Sci. Transl. Med., 4(134), 134ra160; Sundaramurthy et al., 2012, “Blast-Induced Biomechanical Loading of the Rat: An Experimental and Anatomically Accurate Computational Blast Injury Model,” J. Neurotrauma, 29(13), pp. 2352–2364; Svetlov et al., 2010, “Morphologic and Biochemical Characterization of Brain Injury in a Model of Controlled Blast Overpressure Exposure,” J. Trauma, 69(4), pp. 795–804]. Under the same blast input conditions, minimizing head acceleration led to a corresponding elimination of righting time deficits. However, we could still achieve righting time deficits under minimal acceleration conditions by significantly increasing the peak blast overpressure. Together, these data show the importance of characterizing the effect of blast overpressure on head kinematics, with the goal of producing models focused on understanding the effects of blast overpressure on the brain without the complicating factor of superimposed head accelerations.

References

References
1.
Orman
,
J. A.
,
Geyer
,
D.
,
Jones
,
J.
,
Schneider
,
E. B.
,
Grafman
,
J.
,
Pugh
,
M. J.
, and
Dubose
,
J.
,
2012
, “
Epidemiology of Moderate-to-Severe Penetrating Versus Closed Traumatic Brain Injury in the Iraq and Afghanistan Wars
,”
J. Trauma Acute Care Surg
.,
73
(
6 Suppl 5
), pp.
S496
S502
.10.1097/TA.0b013e318275473c
2.
Taniellan
,
T.
, and
Jaycox
,
L. H.
,
2008
, “
Invisible Wounds of War: Psychological and Cognitive Injuries, Their Consequencesm and Services to Assist Recovery
,” Report No. MG-720-CCF.
3.
Bass
,
C. R.
,
Panzer
,
M. B.
,
Rafaels
,
K. A.
,
Wood
,
G.
,
Shridharani
,
J.
, and
Capehart
,
B.
,
2012
, “
Brain Injuries From Blast
,”
Ann. Biomed. Eng.
,
40
(
1
), pp.
185
202
.10.1007/s10439-011-0424-0
4.
Cernak
,
I.
,
Wang
,
Z.
,
Jiang
,
J.
,
Bian
,
X.
, and
Savic
,
J.
,
2001
, “
Ultrastructural and Functional Characteristics of Blast Injury-Induced Neurotrauma
,”
J. Trauma
,
50
(
4
), pp.
695
706
.10.1097/00005373-200104000-00017
5.
Sundaramurthy
,
A.
,
Alai
,
A.
,
Ganpule
,
S.
,
Holmberg
,
A.
,
Plougonven
,
E.
, and
Chandra
,
N.
,
2012
, “
Blast-Induced Biomechanical Loading of the Rat: An Experimental and Anatomically Accurate Computational Blast Injury Model
,”
J. Neurotrauma
,
29
(
13
), pp.
2352
2364
.10.1089/neu.2012.2413
6.
Wang
,
Y.
,
Wei
,
Y.
,
Oguntayo
,
S.
,
Wilkins
,
W.
,
Arun
,
P.
,
Valiyaveettil
,
M.
,
Song
,
J.
,
Long
,
J. B.
, and
Nambiar
,
M. P.
,
2011
, “
Tightly Coupled Repetitive Blast-Induced Traumatic Brain Injury: Development and Characterization in Mice
,”
J. Neurotrauma
,
28
(
10
), pp.
2171
2183
.10.1089/neu.2011.1990
7.
Long
,
J. B.
,
Bentley
,
T. L.
,
Wessner
,
K. A.
,
Cerone
,
C.
,
Sweeney
,
S.
, and
Bauman
,
R. A.
,
2009
, “
Blast Overpressure in Rats: Recreating a Battlefield Injury in the Laboratory
,”
J. Neurotrauma
,
26
(
6
), pp.
827
840
.10.1089/neu.2008.0748
8.
Baalman
,
K.
,
Cotton
,
J.
,
Rasband
,
N.
, and
Rasband
,
M.
,
2012
, “
Blast Wave Exposure Impairs Memory and Decreases Axon Initial Segment Length
,”
J. Neurotrauma
,
30
(
9
), pp.
741
751
.10.1089/neu.2012.2478
9.
Shah
,
A. S.
,
Stemper
,
B. D.
, and
Pintar
,
F. A.
,
2012
, “
Development and Characterization of an Open-Ended Shock Tube for the Study of Blast mTBI
,”
Biomed. Sci. Instrum.
,
48
, pp.
393
400
.
10.
Ahlers
,
S. T.
,
Vasserman-Stokes
,
E.
,
Shaughness
,
M. C.
,
Hall
,
A. A.
,
Shear
,
D. A.
,
Chavko
,
M.
,
McCarron
,
R. M.
, and
Stone
,
J. R.
,
2012
, “
Assessment of the Effects of Acute and Repeated Exposure to Blast Overpressure in Rodents: Toward a Greater Understanding of Blast and the Potential Ramifications for Injury in Humans Exposed to Blast
,”
Front. Neurol.
,
3
, p.
00032
.10.3389/fneur.2012.00032
11.
Svetlov
,
S. I.
,
Prima
,
V.
,
Glushakova
,
O.
,
Svetlov
,
A.
,
Kirk
,
D. R.
,
Gutierrez
,
H.
,
Serebruany
,
V. L.
,
Curley
,
K. C.
,
Wang
,
K. K.
, and
Hayes
,
R. L.
,
2012
, “
Neuro-Glial and Systemic Mechanisms of Pathological Responses in Rat Models of Primary Blast Overpressure Compared to “Composite” Blast
,”
Front. Neurol.
,
3
, p.
00015
.10.3389/fneur.2012.00015
12.
Effgen
,
G. B.
,
Hue
,
C. D.
,
Vogel
, III,
E. W.
,
Panzer
,
M. B.
,
Meaney
,
D. F.
,
Bass
,
C. R.
, and
Morrison
, III,
B.
,
2012
, “
A Multiscale Approach to Blast Neurotrauma Modeling: Part II: Methodology for Inducing Blast Injury to In Vitro Models
,”
Front. Neurol.
,
3
, p.
00023
.10.3389/fneur.2012.00023
13.
Arun
,
P.
,
Abu-Taleb
,
R.
,
Valiyaveettil
,
M.
,
Wang
,
Y.
,
Long
,
J. B.
, and
Nambiar
,
M. P.
,
2012
, “
Transient Changes in Neuronal Cell Membrane Permeability After Blast Exposure
,”
Neuroreport
,
23
(
6
), pp.
342
346
.10.1097/WNR.0b013e328351b58d
14.
Shridharani
,
J. K.
,
Wood
,
G. W.
,
Panzer
,
M. B.
,
Capehart
,
B. P.
,
Nyein
,
M. K.
,
Radovitzky
,
R. A.
, and
Bass
,
C. R.
,
2012
, “
Porcine Head Response to Blast
,”
Front. Neurol.
,
3
, p.
00070
.10.3389/fneur.2012.00070
15.
Liu
,
H.
,
Kang
,
J.
,
Chen
,
J.
,
Li
,
G.
,
Li
,
X.
, and
Wang
,
J.
,
2012
, “
Intracranial Pressure Response to Non-Penetrating Ballistic Impact: An Experimental Study Using a Pig Physical Head Model and Live Pigs
,”
Int. J. Med. Sci.
,
9
(
8
), pp.
655
664
.10.7150/ijms.5004
16.
Dal Cengio Leonardi
,
A.
,
Keane
,
N. J.
,
Bir
,
C. A.
,
Ryan
,
A. G.
,
Xu
,
L.
, and
Vandevord
,
P. J.
,
2012
, “
Head Orientation Affects the Intracranial Pressure Response Resulting From Shock Wave Loading in the Rat
,”
ASME J. Biomech. Eng.
,
45
(
15
), pp.
2595
2602
.10.1016/j.jbiomech.2012.08.024
17.
Ganpule
,
S.
,
Alai
,
A.
,
Plougonven
,
E.
, and
Chandra
,
N.
,
2012
, “
Mechanics of Blast Loading on the Head Models in the Study of Traumatic Brain Injury Using Experimental and Computational Approaches
,”
Biomech. Model Mechanobiol.
12
(
3
), pp.
511
531
.10.1007/s10237-012-0421-8
18.
Leonardi
,
A. D.
,
Bir
,
C. A.
,
Ritzel
,
D. V.
, and
VandeVord
,
P. J.
,
2011
, “
Intracranial Pressure Increases During Exposure to a Shock Wave
,”
J. Neurotrauma
,
28
(
1
), pp.
85
94
.10.1089/neu.2010.1324
19.
Goldstein
,
L. E.
,
Fisher
,
A. M.
,
Tagge
,
C. A.
,
Zhang
,
X. L.
,
Velisek
,
L.
,
Sullivan
,
J. A.
,
Upreti
,
C.
,
Kracht
,
J. M.
,
Ericsson
,
M.
,
Wojnarowicz
,
M. W.
,
Goletiani
,
C. J.
,
Maglakelidze
,
G. M.
,
Casey
,
N.
,
Moncaster
,
J. A.
,
Minaeva
,
O.
,
Moir
,
R. D.
,
Nowinski
,
C. J.
,
Stern
,
R. A.
,
Cantu
,
R. C.
,
Geiling
,
J.
,
Blusztajn
,
J. K.
,
Wolozin
,
B. L.
,
Ikezu
,
T.
,
Stein
,
T. D.
,
Budson
,
A. E.
,
Kowall
,
N. W.
,
Chargin
,
D.
,
Sharon
,
A.
,
Saman
,
S.
,
Hall
,
G. F.
,
Moss
,
W. C.
,
Cleveland
,
R. O.
,
Tanzi
,
R. E.
,
Stanton
,
P. K.
, and
McKee
,
A. C.
,
2012
, “
Chronic Traumatic Encephalopathy in Blast-Exposed Military Veterans and a Blast Neurotrauma Mouse Model
,”
Sci. Transl. Med.
,
4
(
134
), p.
134ra160
.
20.
Svetlov
,
S. I.
,
Prima
,
V.
,
Kirk
,
D. R.
,
Gutierrez
,
H.
,
Curley
,
K. C.
,
Hayes
,
R. L.
, and
Wang
,
K. K.
,
2010
, “
Morphologic and Biochemical Characterization of Brain Injury in a Model of Controlled Blast Overpressure Exposure
,”
J. Trauma
,
69
(
4
), pp.
795
804
.10.1097/TA.0b013e3181bbd885
21.
Budde
,
M. D.
,
Shah
,
A.
,
McCrea
,
M.
,
Cullinan
,
W. E.
,
Pintar
,
F. A.
, and
Stemper
,
B. D.
,
2013
, “
Primary Blast Traumatic Brain Injury in the Rat: Relating Diffusion Tensor Imaging and Behavior
,”
Front. Neurol.
,
4
, p.
00154
.10.3389/fneur.2013.00154
22.
Panzer
,
M. B.
,
Matthews
,
K. A.
,
Yu
,
A. W.
,
Morrison
, III,
B.
,
Meaney
,
D. F.
, and
Bass
,
C. R.
,
2012
, “
A Multiscale Approach to Blast Neurotrauma Modeling: Part I - Development of Novel Test Devices for In Vivo and In Vitro Blast Injury Models
,”
Front. Neurol.
,
3
, p.
00046
.10.3389/fneur.2012.00046
23.
Hallam
,
T. M.
,
Floyd
,
C. L.
,
Folkerts
,
M. M.
,
Lee
,
L. L.
,
Gong
,
Q. Z.
,
Lyeth
,
B. G.
,
Muizelaar
,
J. P.
, and
Berman
,
R. F.
,
2004
, “
Comparison of Behavioral Deficits and Acute Neuronal Degeneration in Rat Lateral Fluid Percussion and Weight-Drop Brain Injury Models
,”
J. Neurotrauma
,
21
(
5
), pp.
521
539
.10.1089/089771504774129865
24.
Hayes
,
R. L.
,
Jenkins
,
L. W.
,
Lyeth
,
B. G.
,
Balster
,
R. L.
,
Robinson
,
S. E.
,
Clifton
,
G. L.
,
Stubbins
,
J. F.
, and
Young
,
H. F.
,
1988
, “
Pretreatment With Phencyclidine, an N-Methyl-D-Aspartate Antagonist, Attenuates Long-Term Behavioral Deficits in the Rat Produced by Traumatic Brain Injury
,”
J. Neurotrauma
,
5
(
4
), pp.
259
274
.10.1089/neu.1988.5.259
25.
Kane
,
M. J.
,
Angoa-Perez
,
M.
,
Briggs
,
D. I.
,
Viano
,
D. C.
,
Kreipke
,
C. W.
, and
Kuhn
,
D. M.
,
2012
, “
A Mouse Model of Human Repetitive Mild Traumatic Brain Injury
,”
J. Neurosci. Methods
,
203
(
1
), pp.
41
49
.10.1016/j.jneumeth.2011.09.003
26.
Friedlander
,
F. G.
,
1946
, “
The Diffraction of Sound Pulses; Diffraction by a Semi-Infinite Plane
,”
Proc. R. Soc., London, Sec. A
,
186
(
1006
), pp.
322
344
.10.1098/rspa.1946.0046
27.
Bass
,
C. R.
,
Rafaels
,
K. A.
, and
Salzar
,
R. S.
,
2008
, “
Pulmonary Injury Risk Assessment for Short-Duration Blasts
,”
J. Trauma
,
65
(
3
), pp.
604
615
.10.1097/TA.0b013e3181454ab4
28.
Valiyaveettil
,
M.
,
Alamneh
,
Y. A.
,
Miller
,
S. A.
,
Hammamieh
,
R.
,
Arun
,
P.
,
Wang
,
Y.
,
Wei
,
Y.
,
Oguntayo
,
S.
,
Long
,
J. B.
, and
Nambiar
,
M. P.
,
2013
, “
Modulation of Cholinergic Pathways and Inflammatory Mediators in Blast-Induced Traumatic Brain Injury
,”
Chem. Biol. Interact.
203
(
1
), pp.
371
375
.10.1016/j.cbi.2012.10.022
29.
Arun
,
P.
,
Oguntayo
,
S.
,
Alamneh
,
Y.
,
Honnold
,
C.
,
Wang
,
Y.
,
Valiyaveettil
,
M.
,
Long
,
J. B.
, and
Nambiar
,
M. P.
,
2012
, “
Rapid Release of Tissue Enzymes Into Blood After Blast Exposure: Potential Use as Biological Dosimeters
,”
PloS one
,
7
(
4
), p.
e33798
.10.1371/journal.pone.0033798
30.
Koliatsos
,
V. E.
,
Cernak
,
I.
,
Xu
,
L.
,
Song
,
Y.
,
Savonenko
,
A.
,
Crain
,
B. J.
,
Eberhart
,
C. G.
,
Frangakis
,
C. E.
,
Melnikova
,
T.
,
Kim
,
H.
, and
Lee
,
D.
,
2011
, “
A Mouse Model of Blast Injury to Brain: Initial Pathological, Neuropathological, and Behavioral Characterization
,”
J. Neuropathol. Exp. Neurol.
,
70
(
5
), pp.
399
416
.10.1097/NEN.0b013e3182189f06
31.
Risling
,
M.
,
Plantman
,
S.
,
Angeria
,
M.
,
Rostami
,
E.
,
Bellander
,
B. M.
,
Kirkegaard
,
M.
,
Arborelius
,
U.
, and
Davidsson
,
J.
,
2011
, “
Mechanisms of Blast Induced Brain Injuries, Experimental Studies in Rats
,”
NeuroImage
,
54
(
Suppl 1
), pp.
S89
S97
.10.1016/j.neuroimage.2010.05.031
32.
Cernak
,
I.
,
Merkle
,
A. C.
,
Koliatsos
,
V. E.
,
Bilik
,
J. M.
,
Luong
,
Q. T.
,
Mahota
,
T. M.
,
Xu
,
L.
,
Slack
,
N.
,
Windle
,
D.
, and
Ahmed
,
F. A.
,
2011
, “
The Pathobiology of Blast Injuries and Blast-Induced Neurotrauma as Identified Using a New Experimental Model of Injury in Mice
,”
Neurobiol. Disease
,
41
(
2
), pp.
538
551
.10.1016/j.nbd.2010.10.025
33.
Vandevord
,
P. J.
,
Bolander
,
R.
,
Sajja
,
V. S.
,
Hay
,
K.
, and
Bir
,
C. A.
,
2012
, “
Mild Neurotrauma Indicates a Range-Specific Pressure Response to Low Level Shock Wave Exposure
,”
Ann. Biomed. Eng.
,
40
(
1
), pp.
227
236
.10.1007/s10439-011-0420-4
34.
Bolander
,
R.
,
Mathie
,
B.
,
Bir
,
C.
,
Ritzel
,
D.
, and
VandeVord
,
P.
,
2011
, “
Skull Flexure as a Contributing Factor in the Mechanism of Injury in the Rat When Exposed to a Shock Wave
,”
Ann. Biomed. Eng.
,
39
(
10
), pp.
2550
2559
.10.1007/s10439-011-0343-0
35.
Saljo
,
A.
,
Bolouri
,
H.
,
Mayorga
,
M.
,
Svensson
,
B.
, and
Hamberger
,
A.
,
2010
, “
Low-Level Blast Raises Intracranial Pressure and Impairs Cognitive Function in Rats: Prophylaxis With Processed Cereal Feed
,”
J. Neurotrauma
,
27
(
2
), pp.
383
389
.10.1089/neu.2009.1053
36.
Chavko
,
M.
,
Watanabe
,
T.
,
Adeeb
,
S.
,
Lankasky
,
J.
,
Ahlers
,
S. T.
, and
McCarron
,
R. M.
,
2011
, “
Relationship Between Orientation to a Blast and Pressure Wave Propagation Inside the Rat Brain
,”
J. Neurosci. Methods
,
195
(
1
), pp.
61
66
.10.1016/j.jneumeth.2010.11.019
37.
Chavko
,
M.
,
Koller
,
W. A.
,
Prusaczyk
,
W. K.
, and
McCarron
,
R. M.
,
2007
, “
Measurement of Blast Wave by a Miniature Fiber Optic Pressure Transducer in the Rat Brain
,”
J. Neurosci. Methods
,
159
(
2
), pp.
277
281
.10.1016/j.jneumeth.2006.07.018
38.
Dal Cengio Leonardi
,
A.
,
Keane
,
N. J.
,
Hay
,
K.
,
Ryan
,
A. G.
,
Bir
,
C. A.
, and
VandeVord
,
P. J.
,
2013
, “
Methodology and Evaluation of Intracranial Pressure Response in Rats Exposed to Complex Shock Waves
,”
Ann. Biomed. Eng.
,
41
(
12
), pp.
2488
2500
.10.1007/s10439-013-0850-2
39.
Skotak
,
M.
,
Wang
,
F.
,
Alai
,
A.
,
Holmberg
,
A.
,
Harris
,
S.
,
Switzer
,
R. C.
, and
Chandra
,
N.
,
2013
, “
Rat Injury Model Under Controlled Field-Relevant Primary Blast Conditions: Acute Response to a Wide Range of Peak Overpressures
,”
J. Neurotrauma
,
30
(
13
), pp.
1147
1160
.10.1089/neu.2012.2652
40.
Yu
,
A. W.
,
Wang
,
H.
,
Matthews
,
K. A.
,
Rafaels
,
K. A.
,
Laskowitz
,
D. T.
,
Gullotti
,
D.
,
Meaney
,
D. F.
,
Morrison
, III,
B.
, and
Bass
,
C. R.
,
2012
, “
Mouse Lethality Risk and Intracranial Pressure During Exposure to Blast
,”
Biomedical Engineering Society Annual Meeting, BMES
,
Atlanta, GA
, Oct. 24–27.
41.
Pellman
,
E. J.
,
Viano
,
D. C.
,
Tucker
,
A. M.
, and
Casson
,
I. R.
,
2003
, “
Concussion in Professional Football: Location and Direction of Helmet Impacts-Part 2
,”
Neurosurgery
,
53
(
6
), pp.
1328
1340
; discussion 1340–1321.10.1227/01.NEU.0000093499.20604.21
42.
Zhang
,
L.
,
Yang
,
K. H.
, and
King
,
A. I.
,
2004
, “
A Proposed Injury Threshold for Mild Traumatic Brain Injury
,”
ASME J. Biomech. Eng.
,
126
(
2
), pp.
226
236
.10.1115/1.1691446
43.
Meaney
,
D. F.
,
Smith
,
D. H.
,
Shreiber
,
D. I.
,
Bain
,
A. C.
,
Miller
,
R. T.
,
Ross
,
D. T.
, and
Gennarelli
,
T. A.
,
1995
, “
Biomechanical Analysis of Experimental Diffuse Axonal Injury
,”
J. Neurotrauma
,
12
(
4
), pp.
689
694
.10.1089/neu.1995.12.689
44.
Kuehn
,
R.
,
Simard
,
P. F.
,
Driscoll
,
I.
,
Keledjian
,
K.
,
Ivanova
,
S.
,
Tosun
,
C.
,
Williams
,
A.
,
Bochicchio
,
G.
,
Gerzanich
,
V.
, and
Simard
,
J. M.
,
2011
, “
Rodent Model of Direct Cranial Blast Injury
,”
J. Neurotrauma
,
28
(
10
), pp.
2155
2169
.10.1089/neu.2010.1532
45.
Nakagawa
,
A.
,
Fujimura
,
M.
,
Kato
,
K.
,
Okuyama
,
H.
,
Hashimoto
,
T.
,
Takayama
,
K.
, and
Tominaga
,
T.
,
2008
, “
Shock Wave-Induced Brain Injury in Rat: Novel Traumatic Brain Injury Animal Model
,”
Acta Neurochir. Suppl.
,
102
, pp.
421
424
.10.1007/978-3-211-85578-2
You do not currently have access to this content.