Femur fracture at the tip of a total hip replacement (THR), commonly known as Vancouver B1 fracture, is mainly treated using rigid metallic bone plates which may result in “stress shielding” leading to bone resorption and implant loosening. To minimize stress shielding, a new carbon fiber (CF)/Flax/Epoxy composite plate has been developed and biomechanically compared to a standard clinical metal plate. For fatigue tests, experiments were done using six artificial femurs cyclically loaded through the femoral head in axial compression for four stages: Stage 1 (intact), stage 2 (after THR insertion), stage 3 (after plate fixation of a simulated Vancouver B1 femoral midshaft fracture gap), and stage 4 (after fracture gap healing). For fracture fixation, one group was fitted with the new CF/Flax/Epoxy plate (n = 3), whereas another group was repaired with a standard clinical metal plate (Zimmer, Warsaw, IN) (n = 3). In addition to axial stiffness measurements, infrared thermography technique was used to capture the femur and plate surface stresses during the testing. Moreover, finite element analysis (FEA) was performed to evaluate the composite plate's axial stiffness and surface stress field. Experimental results showed that the CF/Flax/Epoxy plated femur had comparable axial stiffness (fractured = 645 ± 67 N/mm; healed = 1731 ± 109 N/mm) to the metal-plated femur (fractured = 658 ± 69 N/mm; healed = 1751 ± 39 N/mm) (p = 1.00). However, the bone beneath the CF/Flax/Epoxy plate was the only area that had a significantly higher average surface stress (fractured = 2.10 ± 0.66 MPa; healed = 1.89 ± 0.39 MPa) compared to bone beneath the metal plate (fractured = 1.18 ± 0.93 MPa; healed = 0.71 ± 0.24 MPa) (p < 0.05). FEA bone surface stresses yielded peak of 13 MPa at distal epiphysis (stage 1), 16 MPa at distal epiphysis (stage 2), 85 MPa for composite and 129 MPa for metal-plated femurs at the vicinity of nearest screw just proximal to fracture (stage 3), 21 MPa for composite and 24 MPa for metal-plated femurs at the vicinity of screw farthest away distally from fracture (stage 4). These results confirm that the new CF/Flax/Epoxy material could be a potential candidate for bone fracture plate applications as it can simultaneously provide similar mechanical stiffness and lower stress shielding (i.e., higher bone stress) compared to a standard clinical metal bone plate.

References

References
1.
Bartel
,
D. L.
,
Davy
,
D. T.
, and
Keaveny
,
T. M.
,
2006
,
Orthopaedic Biomechanics: Mechanics and Design in Musculoskeletal Systems
,
Prentice-Hall
,
New Jersey
.
2.
Nordin
,
M.
, and
Frankel
,
V. H.
,
2001
,
Basic Biomechanics of the Musculoskeletal System
,
Lippincott Williams & Wilkins
, PA.
3.
Duncan
,
C. P.
, and
Masri
,
B. A.
,
1995
, “
Fractures of the Femur After Hip Replacement
,”
Instructional Course Lectures
,
44
, pp.
293
304
.
4.
Pilliar
,
R. M.
,
Cameron
,
H. U.
,
Binnington
,
A. G.
,
Szivek
,
J.
, and
Macnab
,
I.
,
1979
, “
Bone Ingrowth and Stress Shielding With a Porous Surface Coated Fracture Fixation Plate
,”
J. Biomed. Mater. Res.
,
13
, pp.
799
810
.10.1002/jbm.820130510
5.
Terjesen
,
T.
, and
Apalset
,
K.
,
1988
, “
The Influence of Different Degrees of Stiffness of Fixation Plates on Experimental Bone Healing
,”
J. Orthop. Res.
,
6
, pp.
293
299
.10.1002/jor.1100060218
6.
Terjesen
,
T.
,
1984
, “
Bone Healing After Metal Plate Fixation and External Fixation of the Osteotomized Rabbit Tibia
,”
Acta Orthop.
,
55
, pp.
69
77
.10.3109/17453678408992316
7.
Uchikura
,
C.
,
Hirano
,
J.
,
Kudo
,
F.
,
Satomi
,
K.
, and
Ohno
,
T.
,
2004
, “
Comparative Study of Nonbridging and Bridging External Fixators for Unstable Distal Radius Fractures
,”
J. Orthop. Sci.
,
9
pp.
560
565
.10.1007/s00776-004-0828-x
8.
Uhthoff
,
H. K.
, and
Dubuc
,
F. L.
,
1971
, “
Bone Structure Changes in the Dog Under Rigid Internal Fixation
,”
Clin. Orthop. Relat. Res.
,
81
, pp.
165
170
.10.1097/00003086-197111000-00026
9.
Woo
,
S. L.
,
Akeson
,
W. H.
,
Coutts
,
R. D.
,
Rutherford
,
L.
,
Doty
,
D.
,
Jemmott
,
G. F.
, and
Amiel
,
D.
,
1976
, “
A Comparison of Cortical Bone Atrophy Secondary to Fixation With Plates With Large Differences in Bending Stiffness
,”
J. Bone Jt. Surg. (Am.).
,
58
, pp.
190
195
.
10.
Anderson
,
L. D.
,
1965
, “
Treatment of Ununited Fractures of the Long Bones: Compression Plate Fixation and the Effect of Different Types of Internal Fixation on Fracture Healing
,”
J. Bone Jt. Surg. (Am.).
,
47
, pp.
191
208
.
11.
Brunner
,
H.
, and
Simpson
,
J. P.
,
1980
, “
Fatigue Fracture of Bone Plates
,”
Injury.
,
11
pp.
203
207
.10.1016/S0020-1383(80)80044-1
12.
Teoh
,
S. H.
,
2000
, “
Fatigue of Biomaterials: A Review
,”
Int. J. Fatigue
,
22
, pp.
825
837
.10.1016/S0142-1123(00)00052-9
13.
Poitout
,
D. G.
,
2004
,
Biomechanics and Biomaterials in Orthopedics
,
Springer
,
New York
.
14.
Woo
,
S. L. Y.
,
Akeson
,
W. H.
,
Levenetz
,
B.
,
Coutts
,
R. D.
,
Matthews
,
J. V.
, and
Amiel
,
D.
,
1974
, “
Potential Application of Graphite Fiber and Methyl Methacrylate Resin Composites as Internal Fixation Plates
,”
J. Biomed. Mater. Res.
,
8
, pp.
321
338
.10.1002/jbm.820080513
15.
Mano
,
J. F.
,
Sousa
,
R. A.
,
Boesel
,
L. F.
,
Neves
,
N. M.
, and
Reis
,
R. L.
,
2004
, “
Bioinert, Biodegradable and Injectable Polymeric Matrix Composites for Hard Tissue Replacement: State of the Art and Recent Developments
,”
Compos. Sci. Technol.
,
64
, pp.
789
817
.10.1016/j.compscitech.2003.09.001
16.
Ali
,
M. S.
,
French
,
T. A.
,
Hastings
,
G. W.
,
Rae
,
T.
,
Rushton
,
N.
,
Ross
,
E. R.
, and
Wynn-Jones
,
C. H.
,
1990
, “
Carbon Fibre Composite Bone Plates. Development, Evaluation and Early Clinical Experience
,”
J. Bone Jt. Surg. (Br.).
,
72
, pp.
586
591
.
17.
Ballo
,
A. M.
,
Akca
,
E. A.
,
Ozen
,
T.
,
Lassila
,
L.
,
Vallittu
,
P. K.
, and
Narhi
,
T. O.
,
2009
, “
Bone Tissue Responses to Glass Fiber-Reinforced Composite Implants—A Histomorphometric Study
,”
Clin. Oral Implants Res.
,
20
, pp.
608
615
.10.1111/j.1600-0501.2008.01700.x
18.
De Santis
,
R.
,
Ambrosio
,
L.
, and
Nicolais
,
L.
,
2000
, “
Polymer-Based Composite Hip Prostheses
,”
J. Inorganic Biochem.
,
79
, pp.
97
102
.10.1016/S0162-0134(99)00228-7
19.
Howling
,
G. I.
,
Ingham
,
E.
,
Sakoda
,
H.
,
Stewart
,
T. D.
,
Fisher
,
J.
,
Antonarulrajah
,
A.
,
Appleyard
,
S.
, and
Rand
,
B.
,
2004
, “
Carbon-Carbon Composite Bearing Materials in Hip Arthroplasty: Analysis of Wear and Biological Response to Wear Debris
,”
J. Mater. Sci. Mater. Med.
,
15
, pp.
91
98
.10.1023/B:JMSM.0000010102.26218.d1
20.
Skinner
,
H. B.
,
1988
, “
Composite Technology for Total Hip Arthroplasty
,”
Clin. Orthop. Relat. Res.
,
235
, pp.
224
236
.
21.
Zimmerman
,
M.
,
Parsons
,
J. R.
,
Alexander
,
H.
,
1987
, “
The Design and Analysis of a Laminated Partially Degradable Composite Bone Plate for Fracture Fixation
,”
J. Biomed. Mater. Res.
,
21
, pp.
345
361
.
22.
Skirving
,
A. P.
,
Day
,
R.
,
Macdonald
,
W.
, and
McLaren
,
R.
,
1987
, “
Carbon Fiber Reinforced Plastic (CFRP) Plates Versus Stainless Steel Dynamic Compression Plates in the Treatment of Fractures of the Tibiae in Dogs
,”
Clin. Orthop. Relat. Res.
,
224
, pp.
117
124
.10.1097/00003086-198711000-00016
23.
Fujihara
,
K.
,
Huang
,
Z. M.
,
Ramakrishna
,
S.
,
Satknanantham
,
K.
, and
Hamada
,
H.
,
2003
, “
Performance Study of Braided Carbon/PEEK Composite Compression Bone Plates
,”
Biomaterials.
,
24
, pp.
2661
2667
.10.1016/S0142-9612(03)00065-6
24.
Gillett
,
N.
,
Brown
,
S. A.
,
Dumbleton
,
J. H.
, and
Pool
,
R. P.
,
1985
, “
The Use of Short Carbon Fibre Reinforced Thermoplastic Plates for Fracture Fixation
,”
Biomaterials.
,
6
, pp.
113
121
.10.1016/0142-9612(85)90074-2
25.
Chandramohan
,
D.
, and
Marimuthu
,
K.
,
2011
, “
Characterization of Natural Fibers and Their Application in Bone Grafting Substitutes
,”
Acta Bioeng. Biomech.
,
13
, pp.
77
84
.
26.
Hanafusa
,
S.
,
Matsusue
,
Y.
,
Yasunaga
,
T.
,
Yamamuro
,
T.
,
Oka
,
M.
,
Shikinami
,
Y.
, and
Ikada
,
Y.
,
1995
, “
Biodegradable Plate Fixation of Rabbit Femoral Shaft Osteotomies. A Comparative Study
,”
Clin. Orthop. Relat. Res.
,
315
, pp.
262
271
.10.1097/00003086-199506000-00032
27.
Strycker
,
M. L.
,
1995
, “
Biodegradable Internal Fixation
,”
J. Foot ankle Surg.
,
34
, pp.
82
88
.10.1016/S1067-2516(09)80107-5
28.
Jockisch
,
K. A.
,
Brown
,
S. A.
,
Bauer
,
T. W.
, and
Merritt
,
K.
,
1992
, “
Biological Response to Chopped-Carbon-Fiber-Reinforced Peek
,”
J. Biomed. Mater. Res.
,
26
, pp.
133
146
.10.1002/jbm.820260202
29.
Kurtz
,
S. M.
, and
Devine
,
J. N.
,
2007
, “
PEEK Biomaterials in Trauma, Orthopedic, and Spinal Implants
,”
Biomaterials
,
28
, pp.
4845
4869
.10.1016/j.biomaterials.2007.07.013
30.
Bagheri
,
Z. S.
,
El Sawi
,
I.
,
Schemitsch
,
E. H.
,
Zdero
,
R.
, and
Bougherara
,
H.
,
2013
, “
Biomechanical Properties of an Advanced New Carbon/Flax/Epoxy Composite Material for Bone Plate Applications
,”
J. Mech. Behav. Biomed. Mater.
,
20
, pp.
398
406
.10.1016/j.jmbbm.2012.12.013
31.
Bagheri
,
Z. S.
,
El Sawi
,
I.
,
Bougherara
,
H.
, and
Zdero
,
R.
,
2014
, “
Biomechanical Fatigue Analysis of an Advanced New Carbon Fiber/Flax/Epoxy Plate for Bone Fracture Repair Using Conventional Fatigue Tests and Thermography
,”
J. Mech. Behav. Biomed. Mater.
,
35
, pp.
27
38
.10.1016/j.jmbbm.2014.03.008
32.
Schemitsch
,
E. H.
,
Bhandari
,
M.
,
Boden
,
S. D.
,
Bourne
,
R. B.
,
Bozic
,
K. J.
,
Jacobs
,
J. J.
, and
Zdero
,
R.
,
2010
, “
The Evidence-Based Approach in Bringing New Orthopaedic Devices to Market
,”
J. Bone Jt. Surg. Am. Vol.
,
92
, pp.
1030
1037
.10.2106/JBJS.H.01532
33.
Bagheri
,
Z. S.
,
Elsawi
,
I.
,
Amleh
,
A.
,
Schemitsch
,
E. H.
,
Zdero
,
R.
, and
Bougherara
,
H.
,
2013
, “
New Flax/Epoxy and CF/Epoxy Composite Materials for Bone Fracture Plate Applications: A Biological and Wettability Study
,” ICCM 19, Montreal, Canada, July 28—Aug. 2, pp.
8880
8889
.
34.
Zdero
,
R.
,
Walker
,
R.
,
Waddell
,
J. P.
, and
Schemitsch
,
E. H.
,
2008
, “
Biomechanical Evaluation of Periprosthetic Femoral Fracture Fixation
,”
J. Bone Jt. Surg. Am. Vol.
,
90
, pp.
1068
1077
.10.2106/JBJS.F.01561
35.
Talbot
,
M.
,
Zdero
,
R.
,
Garneau
,
D.
,
Cole
,
P. A.
, and
Schemitsch
,
E. H.
,
2007
, “
Fixation of Long Bone Segmental Defects: A Biomechanical Study
,”
J. Injury.
,
39
, pp.
181
186
.10.1016/j.injury.2007.08.026
36.
Lever
,
J. P.
,
Zdero
,
R.
,
Nousiainen
,
M. T.
,
Waddell
,
J. P.
, and
Schemitsch
,
E. H.
,
2010
, “
The Biomechanical Analysis of Three Plating Fixation Systems for Periprosthetic Femoral Fracture Near the Tip of a Total Hip Arthroplasty
,”
J. Orthop. Surg. Res.
,
5
(1), p.
45
.10.1186/1749-799X-5-45
37.
Ebrahimi
,
H.
,
Rabinovich
,
M.
,
Vuleta
, V
.
,
Zalcman
,
D.
,
Shah
,
S.
,
Dubov
,
A.
,
Roy
,
K.
,
Siddiqui
,
F. S.
,
Schemitsch
,
E. H.
,
Bougherara
,
H.
, and
Zdero
,
R.
,
2012
, “
Biomechanical Properties of an Intact, Injured, Repaired, and Healed Femur: An Experimental and Computational Study
,”
J. Mech. Behav. Biomed. Mater.
,
16
, pp.
121
135
.10.1016/j.jmbbm.2012.09.005
38.
Shah
,
S.
,
Bougherara
,
H.
,
Schemitsch
,
E. H.
, and
Zdero
,
R.
,
2012
, “
Biomechanical Stress Maps of an Artificial Femur Obtained Using a New Infrared Thermography Technique Validated by Strain Gages
,”
Med. Eng. Phys.
,
34
, pp.
1496
1502
.10.1016/j.medengphy.2012.02.012
39.
Siddiqui
,
F. S.
,
Shah
,
S.
,
Nicayenzi
,
B.
,
Schemitsch
,
E. H.
,
Zdero
,
R.
, and
Bougherara
,
H.
,
2014
, “
Biomechanical Analysis Using Infrared Thermography of a Traditional Metal Plate Versus a Carbon Fiber/Epoxy Plate for Vancouver B1 Femur Fractures
,”
Proc. Inst. Mech. Eng., Part H
,
228
(
1
), pp.
107
113
.10.1177/0954411913501489
40.
Nicayenzi
,
B.
,
Shah
,
S.
,
Schemitsch
,
E. H.
,
Bougherara
,
H.
, and
Zdero
,
R.
,
2011
, “
The Biomechanical Effect of Changes in Cancellous Bone Density on Synthetic Femur Behaviour
,”
Proc. Inst. Mech. Eng., Part H
,
225
, pp.
1050
1060
.10.1177/0954411911420004
41.
Kuzyk
,
P. R.
,
Zdero
,
R.
,
Shah
,
S.
,
Olsen
,
M.
,
Waddell
,
J. P.
, and
Schemitsch
,
E. H.
,
2012
, “
Femoral Head Lag Screw Position for Cephalomedullary Nails: A Biomechanical Analysis
,”
J. Orthopa. Trauma
,
26
, pp.
414
421
.10.1097/BOT.0b013e318229acca
42.
Cristofolini
,
L.
,
Viceconti
,
M.
,
Cappello
,
A.
, and
Toni
,
A.
,
1996
, “
Mechanical Validation of Whole Bone Composite Femur Models
,”
J. Biomech.
,
29
, pp.
525
535
.10.1016/0021-9290(95)00084-4
43.
Elfar
,
J.
,
Menorca
,
R. M.
,
Reed
,
J. D.
, and
Stanbury
,
S.
,
2014
, “
Composite Bone Models in Orthopaedic Surgery Research and Education
,”
J. Am. Acad. Orthop. Surg.
,
22
, pp.
111
120
.10.5435/JAAOS-22-02-111
44.
Aziz
,
M. S.
,
Nicayenzi
,
B.
,
Crookshank
,
M.
,
Bougherara
,
H.
,
Schemitsch
,
E. H.
, and
Zdero
,
R.
,
2014
, “
Biomechanical Measurements of Stiffness and Strength for Five Types of Whole Human and Artificial Humeri
,”
ASME J. Biomech. Eng.
,
136
(
5
), p.
051006
.10.1115/1.4027057
45.
Aziz
,
M. S.
,
Nicayenzi
,
B.
,
Crookshank
,
M. C.
,
Bougherara
,
H.
,
Schemitsch
,
E. H.
, and
Zdero
,
R.
,
2014
, “
Biomechanical Measurements of Cortical Screw Purchase in Five Types of Human and Artificial Humeri
,”
J. Mech. Behav. Biomed. Mater.
,
30
, pp.
159
167
.10.1016/j.jmbbm.2013.11.007
46.
Crookshank
,
M.
,
Coquim
,
J.
,
Olsen
,
M.
,
Schemitsch
,
E. H.
,
Bougherara
,
H.
, and
Zdero
,
R.
,
2012
, “
Biomechanical Measurements of Axial Crush Injury to the Distal Condyles of Human and Synthetic Femurs
,”
Proc. Inst. Mech. Eng., Part H
,
226
, pp.
320
329
.10.1177/0954411912438038
47.
Zdero
,
R.
,
Olsen
,
M.
,
Bougherara
,
H.
, and
Schemitsch
,
E. H.
,
2008
, “
Cancellous Bone Screw Purchase: A Comparison of Synthetic Femurs, Human Femurs, and Finite Element Analysis
,”
Proc. Inst. Mech. Eng., Part H
,
222
, pp.
1175
1183
.10.1243/09544119JEIM409
48.
Zdero
,
R.
,
Elfallah
,
K.
,
Olsen
,
M.
, and
Schemitsch
,
E. H.
,
2009
, “
Cortical Screw Purchase in Synthetic and Human Femurs
,”
ASME J. Biomech. Eng.
,
131
(
9
), p.
094503
.10.1115/1.3194755
49.
Robinson
,
A.
,
Dulieu-Barton
,
J.
,
Quinn
,
S.
, and
Burguete
,
R.
,
2010
, “
Paint Coating Characterization for Thermoelastic Stress Analysis of Metallic Materials
,”
Meas. Sci. Technol.
,
21
, p.
085502
.10.1088/0957-0233/21/8/085502
51.
Dubov
,
A.
,
Kim
,
S. Y.
,
Shah
,
S.
,
Schemitsch
,
E. H.
,
Zdero
,
R.
, and
Bougherara
,
H.
,
2011
, “
The Biomechanics of Plate Repair of Periprosthetic Femur Fractures Near the Tip of a Total Hip Implant: The Effect of Cable-Screw Position
,”
Proc. Inst. Mech. Eng., Part H
,
225
, pp.
857
865
.10.1177/0954411911410642
52.
Shah
,
S.
,
Kim
,
S. Y.
,
Dubov
,
A.
,
Schemitsch
,
E. H.
,
Bougherara
,
H.
, and
Zdero
,
R.
,
2011
, “
The Biomechanics of Plate Fixation of Periprosthetic Femoral Fractures Near the Tip of a Total Hip Implant: Cables, Screws, or Both?
,”
Proc. Inst. Mech. Eng., Part H
,
225
, pp.
845
856
.10.1177/0954411911413060
53.
Davis
,
E. T.
,
Olsen
,
M.
,
Zdero
,
R.
,
Waddell
,
J. P.
, and
Schemitsch
,
E. H.
,
2008
, “
Femoral Neck Fracture Following Hip Resurfacing: The Effect of Alignment of the Femoral Component
,”
J. Bone Jt. Surg. Br. Vol.
,
90
, pp.
1522
1527
.10.1302/0301-620X.90B11.20068
54.
Papini
,
M.
,
Zdero
,
R.
,
Schemitsch
,
E. H.
, and
Zalzal
,
P.
,
2007
, “
The Biomechanics of Human Femurs in Axial and Torsional Loading: Comparison of Finite Element Analysis, Human Cadaveric Femurs, and Synthetic Femurs
,”
ASME J. Biomech. Eng.
,
129
, pp.
12
19
.10.1115/1.2401178
55.
Jasmine
,
M. S.
,
Dahners
,
L. E.
, and
Gilbert
,
J. A.
,
1989
, “
Reduction of Stress Shielding Beneath a Bone Plate by Use of a Polymeric Underplate. An Experimental Study in Dogs
,”
Clin. Orthop. Relat. Res.
,
246
, pp.
293
299
.10.1097/00003086-198909000-00041
56.
Tomita
,
N.
, and
Kutsuna
,
T.
,
1987
, “
Experimental Studies on the Use of a Cushioned Plate for Internal Fixation
,”
Int. Orthop.
,
11
, pp.
135
139
.10.1007/BF00266699
57.
Dulieu-Barton
,
J. M.
,
Quinn
,
S.
,
Eyre
,
C.
, and
Cunningham
,
P. R.
,
2004
, “
Development of a Temperature Calibration Device for Thermoelastic Stress Analysis
,”
Appl. Mech. Mater.
,
1/2
, pp.
197
204
.10.4028/www.scientific.net/AMM.1-2.197
58.
Ghosh
,
K. K.
, and
Karbhari
, V
. M.
,
2006
, “
A Critical Review of Infrared Thermography as a Method for Non-Destructive Evaluation of FRP Rehabilitated Structures
,”
Int. J. Mater. Prod. Technol.
,
25
, pp.
241
266
.10.1504/IJMPT.2006.008882
59.
Pitarresi
,
G.
,
D'Acquisto
,
L.
,
Nigro
,
F.
, and
Siddiolo
,
A. M.
,
2007
, “
Thermoelastic Stress Analysis by Means of a Standard Thermocamera and a 2D-Fft Based Lock-In Technique
,”
Experimental Analysis of Nano and Engineering Materials and Structures
,
Gdoutos
,
E. E.
, ed.,
Springer
,
The Netherlands
, pp.
861
862
.
60.
Bougherara
,
H.
,
Rahim
,
E.
,
Shah
,
S.
,
Dubov
,
A.
,
Schemitsch
,
E. H.
, and
Zdero
,
R.
,
2011
, “
A Preliminary Biomechanical Assessment of a Polymer Composite Hip Implant Using an Infrared Thermography Technique Validated by Strain Gage Measurements
,”
ASME J. Biomech. Eng.
,
133
, p.
074503
.10.1115/1.4004414
61.
Zanetti
,
E. M.
,
Musso
,
S. S.
, and
Audenino
,
A. L.
,
2007
, “
Thermoelastic Stress Analysis by Means of a Standard Thermocamera
,”
Exp. Tech.
,
31
, pp.
42
50
.10.1111/j.1747-1567.2007.00147.x
62.
Harwood
,
N.
, and
Cummings
,
W. M.
,
1986
, “
Applications of Thermoelastic Stress Analysis
,”
Strain
,
22
, pp.
7
12
.10.1111/j.1475-1305.1986.tb00014.x
63.
Hyodo
,
K.
,
Inomoto
,
M.
,
Ma
,
W.
,
Miyakawa
,
S.
, and
Tateishi
,
T.
,
2001
, “
Thermoelastic Femoral Stress Imaging for Experimental Evaluation of Hip Prosthesis Design
,”
JSME Int. J. Ser. C
,
44
, pp.
1065
1071
.10.1299/jsmec.44.1065
64.
Cochran
,
G. V.
,
Palmieri
,
V. R.
, and
Zickel
,
R. E.
,
1994
, “
Aramid-Epoxy Composite Internal Fixation Plates: A Pilot Study
,”
Clin. Biomech. (Bristol, Avon)
,
9
, pp.
315
322
.10.1016/0268-0033(94)90045-0
65.
Ganesh
, V
. K.
,
Ramakrishna
,
K.
, and
Ghista
,
D.
,
2005
, “
Biomechanics of Bone-Fracture Fixation by Stiffness-Graded Plates in Comparison With Stainless-Steel Plates
,”
Biomed. Eng. Online
,
4
, pp.
1
15
.10.1186/1475-925X-4-46
66.
Tayton
,
K.
, and
Bradley
,
J.
,
1983
, “
How Stiff Should Semi-Rigid Fixation of the Human Tibia Be? A Clue to the Answer
,”
J. Bone Jt. Surg. (Br.)
,
65
, pp.
312
315
.
67.
Tayton
,
K.
,
Johnson-Nurse
,
C.
,
McKibbin
,
B.
,
Bradley
,
J.
, and
Hastings
,
G.
,
1982
, “
The Use of Semi-Rigid Carbon-Fibre-Reinforced Plastic Plates for Fixation of Human Fractures. Results of Preliminary Trials
,”
J. Bone Jt. Surg. (Br.)
,
64
, pp.
105
111
.
68.
Saidpour
,
S. H.
,
2006
, “
Assessment of Carbon Fibre Composite Fracture Fixation Plate Using Finite Element Analysis
,”
Ann. Biomed. Eng.
,
34
, pp.
1157
1163
.10.1007/s10439-006-9102-z
69.
Tonino
,
A. J.
,
Davidson
,
C. L.
,
Klopper
,
P. J.
, and
Linclau
,
L. A.
,
1976
, “
Protection From Stress in Bone and Its Effects. Experiments With Stainless Steel and Plastic Plates in Dogs
,”
J. Bone Jt. Surg. (Br.)
,
58
pp.
107
113
.
70.
Fulkerson
,
E.
,
Koval
,
K.
,
Preston
,
C. F.
,
Iesaka
,
K.
,
Kummer
,
F. J.
, and
Egol
,
K. A.
,
2006
, “
Fixation of Periprosthetic Femoral Shaft Fractures Associated With Cemented Femoral Stems: A Biomechanical Comparison of Locked Plating and Conventional Cable Plates
,”
J. Orthop. Trauma
,
20
, pp.
89
93
.10.1097/01.bot.0000199119.38359.96
71.
Kohles
,
S. S.
, and
Vanderby
,
R.
, Jr.
,
1997
, “
Thermographic Strain Analysis of the Proximal Canine Femur
,”
Med. Eng. Phys.
,
19
, pp.
262
266
.10.1016/S1350-4533(96)00015-X
72.
Bergmann
,
G.
,
Deuretzbacher
,
G.
,
Heller
,
M.
,
Graichen
,
F.
,
Rohlmann
,
A.
,
Strauss
,
J.
, and
Duda
,
G. N.
,
2001
, “
Hip Contact Forces and Gait Patterns From Routine Activities
,”
J. Biomech.
,
34
, pp.
859
871
.10.1016/S0021-9290(01)00040-9
73.
Bergmann
,
G.
,
Graichen
,
F.
, and
Rohlmann
,
A.
,
1993
, “
Hip Joint Loading During Walking and Running, Measured in Two Patients
,”
J. Biomech.
,
26
, pp.
969
990
.10.1016/0021-9290(93)90058-M
74.
Paul
,
J. P.
,
1999
, “
Strength Requirements for Internal and External Prostheses
,”
J. Biomech.
,
32
, pp.
381
393
.10.1016/S0021-9290(98)00190-0
75.
Dennis
,
M. G.
,
Simon
,
J. A.
,
Kummer
,
F. J.
,
Koval
,
K. J.
, and
Di Cesare
,
P. E.
,
2000
, “
Fixation of Periprosthetic Femoral Shaft Fractures Occuring at the Tip of the Stem: A Biomechanical Study of Five Techniques
,”
J. Arthroplasty
,
15
, pp.
523
528
.10.1054/arth.2000.4339
You do not currently have access to this content.