Biomechanical modeling methods can be used to predict deformations for medical image registration and particularly, they are very effective for whole-body computed tomography (CT) image registration because differences between the source and target images caused by complex articulated motions and soft tissues deformations are very large. The biomechanics-based image registration method needs to deform the source images using the deformation field predicted by finite element models (FEMs). In practice, the global and local coordinate systems are used in finite element analysis. This involves the transformation of coordinates from the global coordinate system to the local coordinate system when calculating the global coordinates of image voxels for warping images. In this paper, we present an efficient numerical inverse isoparametric mapping algorithm to calculate the local coordinates of arbitrary points within the eight-noded hexahedral finite element. Verification of the algorithm for a nonparallelepiped hexahedral element confirms its accuracy, fast convergence, and efficiency. The algorithm's application in warping of the whole-body CT using the deformation field predicted by means of a biomechanical FEM confirms its reliability in the context of whole-body CT registration.

References

1.
Sint Jan
,
S. V.
,
Sobzack
,
S.
,
Dugailly
,
P.-M.
,
Feipel
,
V.
,
Lefevre
,
P.
,
Lufimpadio
,
J.-L.
,
Salvia
,
P.
,
Viceconti
,
M.
, and
Rooze
,
M.
,
2006
, “
Low-Dose Computed Tomography: A Solution for in Vivo Medical Imaging and Accurate Patient-Specific 3D Bone Modeling?
,”
Clin. Biomech.
,
21
(
9
), pp.
992
998
.10.1016/j.clinbiomech.2006.05.007
2.
Lee
,
Y. S.
,
Kim
,
K. J.
,
Do Ahn
,
S.
,
Choi
,
E. K.
,
Kim
,
J. H.
,
Lee
,
S. W.
,
Song
,
S. Y.
,
Yoon
,
S. M.
,
Kim
,
Y. S.
,
Park
,
J. H.
,
Cho
,
B. C.
, and
Kim
,
S. S.
,
2013
, “
The Application of PET-CT to Post-Mastectomy Regional Radiation Therapy Using a Deformable Image Registration
,”
Radiat. Oncol.
,
8
, p.
104
–113.10.1186/1748-717X-8-104
3.
Zaidi
,
H.
,
2007
, “
Optimisation of Whole-Body PET/CT Scanning Protocols
,”
Biomed. Imaging Intervention J.
,
3
(
2
), p.
e36
–44.10.2349/biij.3.2.e36
4.
Li
,
X.
,
Yankeelov
,
T. E.
,
Peterson
,
T. E.
,
Gore
,
J. C.
, and
Dawant
,
B. M.
,
2008
, “
Automatic Nonrigid Registration of Whole Body CT Mice Images
,”
Med. Phys.
,
35
(
4
), pp.
1507
1520
.10.1118/1.2889758
5.
Mostayed
,
A.
,
Garlapati
,
R. R.
,
Joldes
,
G. R.
,
Wittek
,
A.
,
Roy
,
A.
,
Kikinis
,
R.
,
Warfield
,
S. K.
, and
Miller
,
K.
,
2013
, “
Biomechanical Model as a Registration Tool for Image-Guided Neurosurgery: Evaluation Against BSpline Registration
,”
Ann. Biomed. Eng.
,
41
(
11
), pp.
2409
2425
.10.1007/s10439-013-0838-y
6.
Wittek
,
A.
,
Miller
,
K.
,
Kikinis
,
R.
, and
Warfield
,
S. K.
,
2007
, “
Patient-Specific Model of Brain Deformation: Application to Medical Image Registration
,”
J. Biomech.
,
40
(
4
), pp.
919
929
.10.1016/j.jbiomech.2006.02.021
7.
Hagemann
,
A.
,
Rohr
,
K.
,
Stiehl
,
H. S.
,
Spetzger
,
U.
, and
Gilsbach
,
J. M.
,
1999
, “
Biomechanical Modeling of the Human Head for Physically Based, Nonrigid Image Registration
,”
IEEE Trans. Med. Imaging
,
18
(
10
), pp.
875
884
.10.1109/42.811267
8.
Otoole
,
R. V.
,
Jaramaz
,
B.
,
Digioia
,
A. M.
,
Visnic
,
C. D.
, and
Reid
,
R. H.
,
1995
, “
Biomechanics for Preoperative Planning and Surgical Simulations in Orthopedics
,”
Comput. Biol. Med.
,
25
(
2
), pp.
183
191
.10.1016/0010-4825(94)00043-P
9.
Rohlfing
,
T.
,
Maurer
,
C. R.
,
O'Dell
,
W. G.
, and
Zhong
,
J. H.
,
2004
, “
Modeling Liver Motion and Deformation During the Respiratory Cycle Using Intensity-Based Nonrigid Registration of Gated MR Images
,”
Med. Phys.
,
31
(
3
), pp.
427
432
.10.1118/1.1644513
10.
Snedeker
,
J. G.
,
Wirth
,
S. H.
, and
Espinosa
,
N.
,
2012
, “
Biomechanics of the Normal and Arthritic Ankle Joint
,”
Foot Ankle Clin.
,
17
(
4
), pp.
517
528
.10.1016/j.fcl.2012.08.001
11.
Garlapati
,
R. R.
,
Roy
,
A.
,
Joldes
,
G. R.
,
Wittek
,
A.
,
Mostaryed
,
A.
,
Doyle
,
B.
,
Warfield
,
S. K.
,
Kikinis
,
R.
,
Knuckey
,
N.
,
Bunt
,
S.
, and
Miller
,
K.
,
2013
, “
Biomechanical Modeling Provides More Accurate Data for Neuronavigation Than Rigid Registration
,”
J. Neurosurg.
(in press).10.3171/2013.12.JNS131165
12.
Bathe
,
K.-J.
,
1996
,
Finite Element Procedures
,
Prentice Hall
,
Englewood Cliffs, NJ
.
13.
Joldes
,
G. R.
,
Wittek
,
A.
, and
Miller
,
K.
,
2009
, “
Suite of Finite Element Algorithms for Accurate Computation of Soft Tissue Deformation for Surgical Simulation
,”
Med. Image Anal.
,
13
(
6
), pp.
912
919
.10.1016/j.media.2008.12.001
14.
Lerotic
,
M.
,
Lee
,
S. L.
,
Keegan
,
J.
, and
Yang
,
G. Z.
,
2009
, “
Image Constrained Finite Element Modelling for Real-Time Surgical Simulation and Guidance
,”
IEEE International Symposium on Biomedical Imaging From Nano to Macro
, Boston, MA, pp.
1063
1066
.
15.
Wittek
,
A.
,
Joldes
,
G.
, and
Miller
,
K.
,
2011
, “
Algorithms for Computational Biomechanics of the Brain
,”
Biomechanics of the Brain
,
K.
Miller
, ed.,
Springer
,
New York
, pp.
189
219
.
16.
Joldes
,
G.
,
Wittek
,
A.
,
Warfield
,
S. K.
, and
Miller
,
K.
,
2012
, “
Performing Brain Image Warping Using the Deformation Field Predicted by a Biomechanical Model
,”
Computational Biomechanics for Medicine
,
P. M. F.
Nielsen
,
A.
Wittek
, and
K.
Miller
, eds.,
Springer
,
New York
, pp.
89
96
.
17.
Murti
,
V.
, and
Valliappan
,
S.
,
1986
, “
Numerical Inverse Isoparametric Mapping in Remeshing and Nodal Quantity Contouring
,”
Comput. Struct.
,
22
(
6
), pp.
1011
1021
.10.1016/0045-7949(86)90161-6
18.
Murti
,
V.
,
Wang
,
Y.
, and
Valliappan
,
S.
,
1988
, “
Numerical Inverse Isoparametric Mapping in 3D FEM
,”
Comput. Struct.
,
29
(
4
), pp.
611
622
.10.1016/0045-7949(88)90371-9
19.
Hua
,
C.
,
1990
, “
An Inverse Transformation for Quadrilateral Isoparametric Elements: Analysis and Application
,”
Finite Elem. Anal. Des.
,
7
(
2
), pp.
159
166
.10.1016/0168-874X(90)90007-2
20.
Yuan
,
K. Y.
,
Huang
,
Y. S.
,
Yang
,
H. T.
, and
Pian
,
T. H. H.
,
1994
, “
The Inverse Mapping and Distortion Measures for 8-Node Hexahedral Isoparametric Elements
,”
Comput. Mech.
,
14
(
2
), pp.
189
199
.10.1007/BF00350284
21.
Qian
,
X. D.
,
Ren
,
Q. W.
, and
Zhao
,
Y.
,
1998
, “
An Algorithm for Inverse Isoparametric Mapping in FEM
,”
Chin. J. Comput. Mech.
,
15
, pp.
437
440
.10.7511/jslx19984068
22.
Areias
,
P. M. A.
,
de Sa
,
J. M. A. C.
,
Antonio
,
C. A. C.
, and
Fernandes
,
A. A.
,
2003
, “
Analysis of 3D Problems Using a New Enhanced Strain Hexahedral Element
,”
Int. J. Numer. Methods Eng.
,
58
(
11
), pp.
1637
1682
.10.1002/nme.835
23.
Irving
,
G.
,
Teran
,
J.
, and
Fedkiw
,
R.
,
2006
, “
Tetrahedral and Hexahedral Invertible Finite Elements
,”
Graph Models
,
68
(
2
), pp.
66
89
.10.1016/j.gmod.2005.03.007
24.
Nagrath
,
S.
,
Jansen
,
K. E.
, and
Lahey
,
R. T.
,
2005
, “
Computation of Incompressible Bubble Dynamics With a Stabilized Finite Element Level Set Method
,”
Comput. Method Appl. Mech. Eng.
,
194
(
42–44
), pp.
4565
4587
.10.1016/j.cma.2004.11.012
25.
Li
,
M.
,
Wittek
,
A.
,
Joldes
,
G.
,
Zhang
,
G.
,
Dong
,
F.
,
Kikinis
,
R.
, and
Miller
,
K.
,
2013
, “
Whole-Body Image Registration Using Patient-Specific Non-Linear Finite Element Model
,”
Computational Biomechanics for Medicine: Fundamental Science and Patient-Specific Application
,
B. J.
Doyle
,
K.
Miller
,
A.
Wittek
, and
P. M. F.
Nielsen
, eds.,
Springer
,
New York
, pp.
87
99
.
26.
Miller
,
K.
,
2011
,
Biomechanics of the Brain
,
Springer
,
New York
.
27.
Miller
,
K.
,
Joldes
,
G.
,
Lance
,
D.
, and
Wittek
,
A.
,
2007
, “
Total Lagrangian Explicit Dynamics Finite Element Algorithm for Computing Soft Tissue Deformation
,”
Commun. Numer. Methods Eng.
,
23
(
2
), pp.
121
134
.10.1002/cnm.887
28.
Wittek
,
A.
,
Joldes
,
G.
,
Couton
,
M.
,
Warfield
,
S. K.
, and
Miller
,
K.
,
2010
, “
Patient-Specific Non-Linear Finite Element Modelling for Predicting Soft Organ Deformation in Real-Time: Application to Non-Rigid Neuroimage Registration
,”
Prog. Biophys. Mol. Biol.
,
103
(
2–3
), pp.
292
303
.10.1016/j.pbiomolbio.2010.09.001
29.
Joldes
,
G. R.
,
Wittek
,
A.
, and
Miller
,
K.
,
2010
, “
Real-Time Nonlinear Finite Element Computations on GPU—Application to Neurosurgical Simulation
,”
Comput. Methods Appl. Mech. Eng.
,
199
(
49–52
), pp.
3305
3314
.10.1016/j.cma.2010.06.037
You do not currently have access to this content.