The shoulder is the most mobile joint of the human body due to bony constraint scarcity and soft tissue function unlocking several degrees of freedom (DOF). Clinical evaluation of the shoulder range of motion (RoM) is often limited to a few monoplanar measurements where each DOF varies independently. The main objective of this study was to provide a method and its experimental approach to assess shoulder 3D RoM with DOF interactions. Sixteen participants performed four series of active arm movements with maximal amplitude consisting in (1) elevations with fixed arm axial rotations (elevation series), (2) axial rotations at different elevations (rotation series), both in five planes of elevation, (3) free arm movements with the instruction to fill the largest volume in space while varying hand orientation (random series), and (4) a combination of elevation and rotation series (overall series). A motion analysis system combined with an upper limb kinematic model was used to estimate the 3D joint kinematics. Thoracohumeral Euler angles with correction were chosen to represent rotations. The angle-time-histories were treated altogether to analyze their 3D interaction. Then, all 3D angular poses were included into a nonconvex hull representing the RoM space accounting for DOF interactions. The effect of series of movements (n = 4) on RoM volumes was tested with a one-way repeated-measures ANOVA followed by Bonferroni posthoc analysis. A normalized 3D RoM space was defined by including 3D poses common to a maximal number of participants into a hull of average volume. A significant effect of the series of movements (p < 0.001) on the volumes of thoracohumeral RoM was found. The overall series measured the largest RoM with an average volume of 3.46 ± 0.89 million cubic degrees. The main difference between the series of movements was due to axial rotation. A normalized RoM hull with average volume was found by encompassing arm poses common to more than 50% of the participants. In general, the results confirmed and characterized the complex 3D interaction of shoulder RoM between the DOF. The combination of elevation and rotation series (overall series) is recommended to fully evaluate shoulder RoM. The normalized 3D RoM hull is expected to provide a reliable reference to evaluate shoulder function in clinical research and for defining physiologic continuous limits in 3D shoulder computer simulation models.

References

References
1.
Labriola
,
J. E.
,
Lee
,
T. Q.
,
Debski
,
R. E.
, and
Mcmahon
,
P. J.
,
2005
, “
Stability and Instability of the Glenohumeral Joint: The Role of Shoulder Muscles
,”
J. Shoulder Elbow Surg.
,
14
(
1, Suppl.
), pp.
S32
S38
.10.1016/j.jse.2004.09.014
2.
Karduna
,
A. R.
,
Williams
,
G. R.
,
Iannotti
,
J. P.
, and
Williams
,
J. L.
,
1996
, “
Kinematics of the Glenohumeral Joint: Influences of Muscle Forces, Ligamentous Constraints, and Articular Geometry
,”
J. Orthop. Res.
,
14
(
6
), pp.
986
993
.10.1002/jor.1100140620
3.
Kamper
,
D. G.
, and
Rymer
,
W. Z.
,
1999
, “
Effects of Geometric Joint Constraints on the Selection of Final Arm Posture During Reaching: A Simulation Study
,”
Exp. Brain Res.
,
126
(
1
), pp.
134
138
.10.1007/s002210050723
4.
Huchez
,
A.
,
Haering
,
D.
,
Holvoët
,
P.
,
Barbier
,
F.
, and
Begon
,
M.
,
2013
, “
Local Versus Global Optimal Sports Techniques in a Group of Athletes
,”
Comput. Methods Biomech. Biomed. Eng.
(in press).
5.
Gutiérrez
,
S.
,
Levy
,
J. C.
,
Frankle
,
M. A.
,
Cuff
,
D.
,
Keller
,
T. S.
,
Pupello
,
D. R.
, and
Lee
, III,
W. E.
,
2008
, “
Evaluation of Abduction Range of Motion and Avoidance of Inferior Scapular Impingement in a Reverse Shoulder Model
,”
J. Shoulder Elbow Surg.
,
17
(
4
), pp.
608
615
.10.1016/j.jse.2007.11.010
6.
Klopčar
,
N.
,
Tomšič
,
M.
, and
Lenarčič
,
J.
,
2007
, “
A Kinematic Model of the Shoulder Complex to Evaluate the Arm-Reachable Workspace
,”
J. Biomech.
,
40
(
1
), pp.
86
91
.10.1016/j.jbiomech.2005.11.010
7.
Maurel
,
W.
, and
Thalmann
,
D.
,
2000
, “
Human Shoulder Modeling Including Scapulo-Thoracic Constraint and Joint Sinus Cones
,”
Comput. Graph.
,
24
(
2
), pp.
203
218
.10.1016/S0097-8493(99)00155-7
8.
Illyés
,
Á.
, and
Kiss
,
R. M.
,
2006
, “
Method for Determining the Spatial Position of the Shoulder With Ultrasound-Based Motion Analyzer
,”
J. Electromyogr. Kinesiol.
,
16
(
1
), pp.
79
88
.10.1016/j.jelekin.2005.06.007
9.
Namdari
,
S.
,
Yagnik
,
G.
,
Ebaugh
,
D. D.
,
Nagda
,
S.
,
Ramsey
,
M. L.
,
Williams
, Jr.,
G. R.
, and
Mehta
,
S.
,
2012
, “
Defining Functional Shoulder Range of Motion for Activities of Daily Living
,”
J. Shoulder Elbow Surg.
,
21
(
9
), pp.
1177
1183
.10.1016/j.jse.2011.07.032
10.
Karduna
,
A. R.
,
Mcclure
,
P. W.
,
Michener
,
L. A.
, and
Sennett
,
B.
,
2001
, “
Dynamic Measurements of Three-Dimensional Scapular Kinematics: A Validation Study
,”
ASME J. Biomech. Eng.
,
123
(
2
), pp.
184
190
.10.1115/1.1351892
11.
Hamming
,
D.
,
Braman
,
J. P.
,
Phadke
,
V.
,
Laprade
,
R. F.
, and
Ludewig
,
P. M.
,
2012
, “
The Accuracy of Measuring Glenohumeral Motion With a Surface Humeral Cuff
,”
J. Biomech.
,
45
(
7
), pp.
1161
1168
.10.1016/j.jbiomech.2012.02.003
12.
Roux
,
E.
,
Bouilland
,
S.
,
Godillon-Maquinghen
,
A. P.
, and
Bouttens
,
D.
,
2002
, “
Evaluation of the Global Optimisation Method Within the Upper Limb Kinematics Analysis
,”
J. Biomech.
,
35
(
9
), pp.
1279
1283
.10.1016/S0021-9290(02)00088-X
13.
Barnes
,
C. J.
,
Van Steyn
,
S. J.
, and
Fischer
,
R. A.
,
2001
, “
The Effects of Age, Sex, and Shoulder Dominance on Range of Motion of the Shoulder
,”
J. Shoulder Elbow Surg.
,
10
(
3
), pp.
242
246
.10.1067/mse.2001.115270
14.
Herrington
,
L.
, and
Horsley
,
I.
,
2013
, “
Effects of Latissimus Dorsi Length on Shoulder Flexion in Canoeists, Swimmers, Rugby Players, and Controls
,”
J. Sport Health Sci.
,
3
(
1
), pp. 60–63.10.1016/j.jshs.2013.01.004
15.
Charteris
,
J.
, and
Taves
,
C.
,
1978
, “
The Process of Habituation to Treadmill Walking: A Kinematic Analysis
,”
Percept. Mot. Skills
,
47
(
2
), pp.
659
666
.10.2466/pms.1978.47.2.659
16.
Barton
,
J. G.
, and
Lees
,
A.
,
1997
, “
An Application of Neural Networks for Distinguishing Gait Patterns on the Basis of Hip-Knee Joint Angle Diagrams
,”
Gait Posture
,
5
(
1
), pp.
28
33
.10.1016/S0966-6362(96)01070-3
17.
Jackson
,
M.
,
Michaud
,
B.
,
Tétreault
,
P.
, and
Begon
,
M.
,
2012
, “
Improvements in Measuring Shoulder Joint Kinematics
,”
J. Biomech.
,
45
(
12
), pp.
2180
2183
.10.1016/j.jbiomech.2012.05.042
18.
Fohanno
,
V.
,
Lacouture
,
P.
, and
Colloud
,
F.
,
2013
, “
Improvement of Upper Extremity Kinematics Estimation Using a Subject-Specific Forearm Model Implemented in a Kinematic Chain
,”
J. Biomech.
,
46
(
6
), pp.
1053
1059
.10.1016/j.jbiomech.2013.01.029
19.
Lempereur
,
M.
,
Leboeuf
,
F.
,
Brochard
,
S.
,
Rousset
,
J.
,
Burdin
, V
.
, and
Rémy-Néris
,
O.
,
2010
, “
In Vivo Estimation of the Glenohumeral Joint Centre by Functional Methods: Accuracy and Repeatability Assessment
,”
J. Biomech.
,
43
(
2
), pp.
370
374
.10.1016/j.jbiomech.2009.09.029
20.
Wu
,
G.
,
Van Der Helm
,
F. C. T.
,
Veeger
,
H. E. J.
,
Makhsous
,
M.
,
Van Roy
,
P.
,
Anglin
,
C.
,
Nagels
,
J.
,
Karduna
,
A. R.
,
Mcquade
,
K.
,
Wang
,
X.
,
Werner
,
F. W.
, and
Buchholz
,
B.
,
2005
, “
ISB Recommendation on Definitions of Joint Coordinate Systems of Various Joints for the Reporting of Human Joint Motion—Part II: Shoulder, Elbow, Wrist and Hand
,”
J. Biomech.
,
38
(
5
), pp.
981
992
.10.1016/j.jbiomech.2004.05.042
21.
O'Brien
,
J. F.
,
Bodenheimer
,
R. E.
,
Brostow
,
G. J.
, and
Hodgins
,
J. K.
,
2000
, “
Automatic Joint Parameter Estimation From Magnetic Motion Capture Data
,”
Proceedings of Graphics Interface
, pp.
53
60
.
22.
Ehrig
,
R. M.
,
Heller
,
M. O.
,
Kratzenstein
,
S.
,
Duda
,
G. N.
,
Trepczynski
,
A.
, and
Taylor
,
W. R.
,
2011
, “
The SCoRE Residual: A Quality Index to Assess the Accuracy of Joint Estimations
,”
J. Biomech.
,
44
(
7
), pp.
1400
1404
.10.1016/j.jbiomech.2010.12.009
23.
Begon
,
M.
,
Wieber
,
P.-B.
, and
Yeadon
,
M. R.
,
2008
, “
Kinematics Estimation of Straddled Movements on High Bar From a Limited Number of Skin Markers Using a Chain Model
,”
J. Biomech.
,
41
(
3
), pp.
581
586
.10.1016/j.jbiomech.2007.10.005
24.
Lundgren
,
J.
,
2010
, “
Inpolyhedron—Are Points Inside a Volume?
,” MATLAB Central File Exchange, retrieved Apr. 12, 2012,
http://
www.mathworks.com/matlabcentral/fileexchange/28851-alpha-shapes
25.
Hughes
,
P. C.
,
Green
,
R. A.
, and
Taylor
,
N. F.
,
2012
, “
Measurement of Subacromial Impingement of the Rotator Cuff
,”
J. Sci. Med. Sport
,
15
(
1
), pp.
2
7
.10.1016/j.jsams.2011.07.001
26.
Kuhn
,
J. E.
,
Huston
,
L. J.
,
Soslowsky
,
L. J.
,
Shyr
,
Y.
, and
Blasier
,
R. B.
,
2005
, “
External Rotation of the Glenohumeral Joint: Ligament Restraints and Muscle Effects in the Neutral and Abducted Positions
,”
J. Shoulder Elbow Surg.
,
14
(
1,Supplement
), pp.
S39
S48
.10.1016/j.jse.2004.09.016
27.
Jobe
,
C. M.
, and
Lannotti
,
J. P.
,
1995
, “
Limits Imposed on Glenohumeral Motion by Joint Geometry
,”
J. Shoulder Elbow Surg.
,
4
(
4
), pp.
281
285
.10.1016/S1058-2746(05)80021-7
28.
Codman
,
E. A.
,
1934
, The Shoulder: Rupture of the Supraspinatus Tension and Other Lesions in or About the Subacronial Bursa, Thomas Todd Company, Boston.
29.
Masjedi
,
M.
,
Lovell
,
C.
, and
Johnson
,
G. R.
,
2011
, “
Comparison of Range of Motion and Function of Subjects With Reverse Anatomy Bayley–Walker Shoulder Replacement With Those of Normal Subjects
,”
Human Movement Sci.
,
30
(
6
), pp.
1062
1071
.10.1016/j.humov.2010.08.014
30.
Keener
,
J. D.
,
Steger-May
,
K.
,
Stobbs
,
G.
, and
Yamaguchi
,
K.
,
2010
, “
Asymptomatic Rotator Cuff Tears: Patient Demographics and Baseline Shoulder Function
,”
J. Shoulder Elbow Surg.
,
19
(
8
), pp.
1191
1198
.10.1016/j.jse.2010.07.017
31.
See “
Supplemental Data
” tab for the Appendix section in the ASME Digital Collection for mesh file including 3D coordinates of the points defining average RoM hull.10.1115/1.4027665
You do not currently have access to this content.