Vascularized biological tissue has been shown to increase in stiffness with increased perfusion pressure. The interaction between blood in the vasculature and other tissue components can be modeled with a poroelastic, biphasic approach. The ability of this model to reproduce the pressure-driven stiffening behavior exhibited by some tissues depends on the choice of the mechanical constitutive relation, defined by the Helmholtz free energy density of the skeleton. We analyzed the behavior of a number of isotropic poroelastic constitutive relations by applying a swelling pressure, followed by homogeneous uniaxial or simple-shear deformation. Our results demonstrate that a strain-stiffening constitutive relation is required for a material to show pressure-driven stiffening, and that the strain-stiffening terms must be volume-dependent.

References

References
1.
May-Newman
,
K.
,
Omens
,
J. H.
,
Pavelec
,
R. S.
, and
McCulloch
,
A. D.
,
1994
, “
Three-Dimensional Transmural Mechanical Interaction Between the Coronary Vasculature and Passive Myocardium in the Dog
,”
Circ. Res.
,
74
(
6
), pp.
1166
1178
.10.1161/01.RES.74.6.1166
2.
Wildhaber
,
J. H.
,
Uhlig
,
T.
, and
Sly
,
P. D.
,
1998
, “
Partitioning of Alterations in Pulmonary Mechanics Due to Vascular Engorgement in Piglets
,”
Pediatr Pulmonol
,
25
(
1
), pp.
45
51
.10.1002/(SICI)1099-0496(199801)25:1<45::AID-PPUL5>3.0.CO;2-N
3.
Peták
,
F.
,
Habre
,
W.
,
Hantos
,
Z.
,
Sly
,
P. D.
, and
Morel
,
D. R.
,
2002
, “
Effects of Pulmonary Vascular Pressures and Flow on Airway and Parenchymal Mechanics in Isolated Rat Lungs
,”
J. Appl. Physiol.
,
92
(
1
), pp.
169
178
.
4.
Gefen
,
A.
, and
Margulies
,
S. S.
,
2004
, “
Are In Vivo and In Situ Brain Tissues Mechanically Similar?
,”
J. Biomech.
,
37
(
9
), pp.
1339
1352
.10.1016/j.jbiomech.2003.12.032
5.
Bogen
,
D. K.
,
1987
, “
Strain Energy Descriptions of Biological Swelling. I: Single Fluid Compartment Models
,”
ASME J. Biomech. Eng.
,
109
(
3
), pp.
252
256
.10.1115/1.3138677
6.
May-Newman
,
K.
, and
McCulloch
,
A. D.
,
1998
, “
Homogenization Modeling for the Mechanics of Perfused Myocardium
,”
Prog. Biophys. Mol. Biol.
,
69
(2–3), pp.
463
481
.10.1016/S0079-6107(98)00020-0
7.
Bilston
,
L. E.
,
2002
, “
The Effect of Perfusion on Soft Tissue Mechanical Properties: A Computational Model
,”
Comput. Methods Biomech. Biomed. Eng.
,
5
(
4
), pp.
283
290
.10.1080/10255840290032658
8.
Rajagopal
,
V.
,
Nielsen
,
P. M. F.
, and
Nash
,
M. P.
,
2010
, “
Modeling Breast Biomechanics for Multi-Modal Image Analysis—Successes and Challenges
,”
Wiley Interdiscip. Rev. Syst. Biol. Med
,
2
(
3
), pp.
293
304
.10.1002/wsbm.58
9.
Liu
,
C.
,
Moreira
,
P.
,
Zemiti
,
N.
, and
Poignet
,
P.
,
2011
, “
3D Force Control for Robotic-Assisted Beating Heart Surgery Based on Viscoelastic Tissue Model
,”
Conference Proceedings of IEEE Engineering in Medicine and Biology Society
,
2011
, pp.
7054
7058
.
10.
Coussy
,
O.
,
2004
,
Poromechanics
,
John Wiley & Sons
,
West Sussex
, UK.
11.
Chapelle
,
D.
,
Gerbeau
,
J.-F.
,
Sainte-Marie
,
J.
, and
Vignon-Clementel
,
I. E.
,
2010
, “
A Poroelastic Model Valid in Large Strains With Applications to Perfusion in Cardiac Modeling
,”
Comput. Mech.
,
46
(
1
), pp.
91
101
.10.1007/s00466-009-0452-x
12.
de Buhan
,
P.
,
Chateau
,
X.
, and
Dormieux
,
L.
,
1998
, “
The Constitutive Equations of Finite Strain Poroelasticity in the Light of a Micro-Macro Approach
,”
Eur. J. Mech. A Solids
,
17
(
6
), pp.
909
921
.10.1016/S0997-7538(98)90501-0
13.
Bradley
,
C.
,
Bowery
,
A.
,
Britten
,
R.
,
Budelmann
,
V.
,
Camara
,
O.
,
Christie
,
R.
,
Cookson
,
A.
,
Frangi
,
A. F.
,
Gamage
,
T. B.
,
Heidlauf
,
T.
,
Krittian
,
S.
,
Ladd
,
D.
,
Little
,
C.
,
Mithraratne
,
K.
,
Nash
,
M.
,
Nickerson
,
D.
,
Nielsen
,
P.
,
Nordbø
,
Ø.
,
Omholt
,
S.
,
Pashaei
,
A.
,
Paterson
,
D.
,
Rajagopal
,
V.
,
Reeve
,
A.
,
Röhrle
,
O.
,
Safaei
,
S.
,
Sebastián
,
R.
,
Steghöfer
,
M.
,
Wu
,
T.
,
Yu
,
T.
,
Zhang
,
H.
, and
Hunter
,
P.
,
2011
, “
OpenCMISS: A Multi-Physics & Multi-Scale Computational Infrastructure for the VPH/Physiome Project
,”
Prog. Biophys. Mol. Biol.
,
107
(
1
), pp.
32
47
.10.1016/j.pbiomolbio.2011.06.015
14.
Badia
,
S.
, and
Codina
,
R.
,
2010
, “
Stabilized Continuous and Discontinuous Galerkin Techniques for Darcy Flow
,”
Comput. Methods Appl. Mech. Eng.
,
199
(
25–28
), pp.
1654
1667
.10.1016/j.cma.2010.01.015
15.
Mooney
,
M.
,
1940
, “
A Theory of Large Elastic Deformation
,”
J. Appl. Phys.
,
11
(
9
), pp.
582
592
.10.1063/1.1712836
16.
Rivlin
,
R. S.
,
1947
, “
Torsion of a Rubber Cylinder
,”
J. Appl. Phys.
,
18
(
5
), pp.
444
449
.10.1063/1.1697674
17.
Fung
,
Y. C.
,
1967
, “
Elasticity of Soft Tissues in Simple Elongation
,”
Am. J. Physiol.
,
213
(
6
), pp.
1532
1544
.
18.
Chuong
,
C. J.
, and
Fung
,
Y. C.
,
1983
, “
Three-Dimensional Stress Distribution in Arteries
,”
ASME J. Biomech. Eng.
,
105
(
3
), pp.
268
274
.10.1115/1.3138417
19.
Guccione
,
J. M.
,
McCulloch
,
A. D.
, and
Waldman
,
L. K.
,
1991
, “
Passive Material Properties of Intact Ventricular Myocardiumd Determined from a Cylindrical Model
,”
ASME J. Biomech. Eng.
,
113
(
1
), pp.
42
55
.10.1115/1.2894084
20.
Costa
,
K. D.
,
Holmes
,
J. W.
, and
Mcculloch
,
A. D.
,
2001
, “
Modelling Cardiac Mechanical Properties in Three Dimensions
,”
Philos. Trans. R. Soc., A
,
359
(
1783
), pp.
1233
1250
.10.1098/rsta.2001.0828
21.
Vankan
,
W. J.
,
Huyghe
,
J. M.
,
Drost
,
M. R.
,
Janssen
,
J. D.
, and
Huson
,
A.
,
1997
, “
A Finite Element Mixture Model for Hierarchical Porous Media
,”
Int. J. Numer. Methods Eng.
,
40
(
2
), pp.
193
210
.10.1002/(SICI)1097-0207(19970130)40:2<193::AID-NME55>3.0.CO;2-9
22.
Holmes
,
M. H.
, and
Mow
,
V. C.
,
1990
, “
The Nonlinear Characteristics of Soft Gels and Hydrated Connective Tissues in Ultrafiltration
,”
J. Biomech.
,
23
(
11
), pp.
1145
1156
.10.1016/0021-9290(90)90007-P
23.
Holzapfel
,
G. A.
,
2000
,
Nonlinear Solid Mechanics. A Continuum Approach for Engineering
,
Wiley
,
Chichester
, UK.
24.
LeGrice
,
I. J.
,
Smaill
,
B. H.
,
Chai
,
L. Z.
,
Edgar
,
S. G.
,
Gavin
,
J. B.
, and
Hunter
,
P. J.
,
1995
, “
Laminar Structure of the Heart: Ventricular Myocyte Arrangement and Connective Tissue Architecture in the Dog
,”
Am. J. Physiol.
,
269
(
2
), pp.
H571
H582
.
25.
Dokos
,
S.
,
Smaill
,
B. H.
,
Young
,
A. A.
, and
LeGrice
,
I. J.
,
2002
, “
Shear Properties of Passive Ventricular Myocardium
,”
Am. J. Physiol. Heart Circ. Physiol.
,
283
(
6
), pp.
H2650
H2659
.
26.
Demer
,
L. L.
, and
Yin
,
F. C.
,
1983
, “
Passive Biaxial Mechanical Properties of Isolated Canine Myocardium
,”
J. Physiol.
,
339
(
1
), pp.
615
630
.
27.
Schmid
,
H.
,
Nash
,
M. P.
,
Young
,
A. A.
, and
Hunter
,
P. J.
,
2006
, “
Myocardial Material Parameter Estimation—A Comparative Study for Simple Shear
,”
ASME J. Biomech. Eng.
,
128
(
5
), pp.
742
750
.10.1115/1.2244576
28.
Bogen
,
D. K.
, and
McMahon
,
T. A.
,
1979
, “
Do Cardiac Aneurysms Blow Out?
,”
Biophys. J.
,
27
(
2
), pp.
301
316
.10.1016/S0006-3495(79)85219-4
29.
Horowitz
,
A.
,
Lanir
,
Y.
,
Yin
,
F. C. P.
,
Perl
,
M.
,
Sheinman
,
I.
, and
Strumpf
,
R. K.
,
1988
, “
Structural Three-Dimensional Constitutive Law for the Passive Myocardium
,”
ASME J. Biomech. Eng.
,
110
(
3
), pp.
200
207
.10.1115/1.3108431
30.
Chapelle
,
D.
, and
Moireau
,
P.
,
2014
, “
General Coupling of Porous Flows and Hyperelastic Formulations—From Thermodynamics Principles to Energy Balance and Compatible Time Schemes
,”
Eur. J. Mech. A Fluids
,
46
, pp.
82
96
.10.1016/j.euromechflu.2014.02.009
31.
Cookson
,
A. N.
,
Lee
,
J.
,
Michler
,
C.
,
Chabiniok
,
R.
,
Hyde
,
E.
,
Nordsletten
,
D. A.
,
Sinclair
,
M.
,
Siebes
,
M.
, and
Smith
,
N. P.
,
2012
, “
A Novel Porous Mechanical Framework for Modelling the Interaction Between Coronary Perfusion and Myocardial Mechanics
,”
J. Biomech.
,
45
(
5
), pp.
850
855
.10.1016/j.jbiomech.2011.11.026
32.
Hunter
,
P. J.
,
Nielsen
,
P. M.
,
Smaill
,
B. H.
,
LeGrice
,
I. J.
, and
Hunter
,
I. W.
,
1992
, “
An Anatomical Heart Model With Applications to Myocardial Activation and Ventricular Mechanics
,”
Crit. Rev. Biomed. Eng.
,
20
(
5–6
), pp.
403
426
.
You do not currently have access to this content.