Background: Reduced exercise capacity is nearly universal among Fontan patients, though its etiology is not yet fully understood. While previous computational studies have attempted to model Fontan exercise, they did not fully account for global physiologic mechanisms nor directly compare results against clinical and physiologic data. Methods: In this study, we developed a protocol to simulate Fontan lower-body exercise using a closed-loop lumped-parameter model describing the entire circulation. We analyzed clinical exercise data from a cohort of Fontan patients, incorporated previous clinical findings from literature, quantified a comprehensive list of physiological changes during exercise, translated them into a computational model of the Fontan circulation, and designed a general protocol to model Fontan exercise behavior. Using inputs of patient weight, height, and if available, patient-specific reference heart rate (HR) and oxygen consumption, this protocol enables the derivation of a full set of parameters necessary to model a typical Fontan patient of a given body-size over a range of physiologic exercise levels. Results: In light of previous literature data and clinical knowledge, the model successfully produced realistic trends in physiological parameters with exercise level. Applying this method retrospectively to a set of clinical Fontan exercise data, direct comparison between simulation results and clinical data demonstrated that the model successfully reproduced the average exercise response of a cohort of typical Fontan patients. Conclusion: This work is intended to offer a foundation for future advances in modeling Fontan exercise, highlight the needs in clinical data collection, and provide clinicians with quantitative reference exercise physiologies for Fontan patients.

References

References
1.
Marino
,
B.
,
2002
, “
Outcomes after the Fontan Procedure
,”
Curr. Opin. Pediatr.
,
14
(
5
), pp.
620
626
.10.1097/00008480-200210000-00010
2.
Gewillig
,
M. H.
,
Lundström
,
U. R.
,
Bull
,
C.
,
Wyse
,
R. K.
, and
Deanfield
,
J. E.
,
1990
, “
Exercise Responses in Patients With Congenital Heart Disease After Fontan Repair: Patterns and Determinants of Performance
,”
J. Am. Coll. Cardiol.
,
15
(
6
), pp.
1424
1432
.10.1016/S0735-1097(10)80034-8
3.
Durongpisitkul
,
K.
,
Driscoll
,
D. J.
,
Mahoney
,
D. W.
,
Wollan
,
P. C.
,
Mottram
,
C. D.
,
Puga
,
F. J.
, and
Danielson
,
G. K.
,
1997
, “
Cardiorespiratory Response to Exercise After Modified Fontan Operation: Determinants of Performance
,”
J. Am. Coll. Cardiol.
,
29
(
4
), pp.
785
790
.10.1016/S0735-1097(96)00568-2
4.
Yang
,
W.
,
Vignon-Clementel
,
I. E.
,
Troianowski
,
G.
,
Reddy
,
V. M.
,
Feinstein
,
J. A.
, and
Marsden
,
A. L.
,
2011
, “
Hepatic Blood Flow Distribution and Performance in Conventional and Novel Y-Graft Fontan Geometries: A Case Series Computational Fluid Dynamics Study
,”
J. Thorac. Cardiovasc. Surg.
,
143
, pp.
1086
1097
.10.1016/j.jtcvs.2011.06.042
5.
Whitehead
,
K. K.
,
Pekkan
,
K.
,
Kitajima
,
H. D.
,
Paridon
,
S. M.
,
Yoganathan
,
A. P.
, and
Fogel
,
M. A.
,
2007
, “
Nonlinear Power Loss During Exercise in Single-Ventricle Patients After the Fontan: Insights From Computational Fluid Dynamics
,”
Circulation
,
116
(
11 Suppl
), pp.
I165
I171
.10.1161/CIRCULATIONAHA.106.680827
6.
Justino
,
H.
,
Benson
,
L.
, and
Freedom
,
R.
,
2001
, “
Development of Unilateral Pulmonary Arteriovenous Malformations Due to Unequal Distribution of Hepatic Venous Flow
,”
Circulation
,
103
(
8
), pp.
E39
E40
.10.1161/01.CIR.103.8.e39
7.
Srivastava
,
D.
,
Preminger
,
T.
,
Lock
,
J. E.
,
Mandell
,
V.
,
Keane
,
J. F.
,
Mayer
,
J. E.
,
Kozakewich
,
H.
, and
Spevak
,
P. J.
,
1995
, “
Hepatic Venous Blood and the Development of Pulmonary Arteriovenous Malformations in Congenital Heart Disease
,”
Circulation
,
92
(
5
), pp.
1217
1222
.10.1161/01.CIR.92.5.1217
8.
Shachar
,
G. B.
,
Fuhrman
,
B. P.
,
Wang
,
Y.
,
Lucas
,
R. V.
, and
Lock
,
J. E.
,
1982
, “
Rest and Exercise Hemodynamics After the Fontan Procedure
,”
Circulation
,
65
(
6
), pp.
1043
1048
.10.1161/01.CIR.65.6.1043
9.
Goldstein
,
B. H.
,
Connor
,
C. E.
,
Gooding
,
L.
, and
Rocchini
,
A. P.
,
2010
, “
Relation of Systemic Venous Return, Pulmonary Vascular Resistance, and Diastolic Dysfunction to Exercise Capacity in Patients With Single Ventricle Receiving Fontan Palliation
,”
Am. J. Cardiol.
,
105
(
8
), pp.
1169
1175
.10.1016/j.amjcard.2009.12.020
10.
Migliavacca
,
F.
,
Balossino
,
R.
,
Pennati
,
G.
,
Dubini
,
G.
,
Hsia
,
T. Y.
,
De Leval
,
M. R.
, and
Bove
,
E. L.
,
2006
, “
Multiscale Modelling in Biofluidynamics: Application to Reconstructive Paediatric Cardiac Surgery
,”
J. Biomech.
,
39
(
6
), pp.
1010
1020
.10.1016/j.jbiomech.2005.02.021
11.
Taylor
,
C. A.
,
Draney
,
M. T.
,
Ku
,
J. P.
,
Parker
,
D.
,
Steele
,
B. N.
,
Wang
,
K.
, and
Zarins
,
C. K.
,
1999
, “
Predictive Medicine: Computational Techniques in Therapeutic Decision-Making
,”
Comput. Aided Surg.
,
4
(
5
), pp.
231
247
.10.3109/10929089909148176
12.
Degroff
,
C. G.
,
2008
, “
Modeling the Fontan Circulation: Where We Are and Where We Need to Go
,”
Pediatr. Cardiol.
,
29
(
1
), pp.
3
12
.10.1007/s00246-007-9104-0
13.
Marsden
,
A. L.
,
Vignon-Clementel
,
I. E.
,
Chan
,
F. P.
,
Feinstein
,
J. A.
, and
Taylor
,
C. A.
,
2007
, “
Effects of Exercise and Respiration on Hemodynamic Efficiency in Cfd Simulations of the Total Cavopulmonary Connection
,”
Ann. Biomed. Eng.
,
35
(
2
), pp.
250
263
.10.1007/s10439-006-9224-3
14.
Baretta
,
A.
,
Corsini
,
C.
,
Marsden
,
A. L.
,
Vignon-Clementel
,
I. E.
,
Hsia
,
T. Y.
,
Dubini
,
G.
,
Migliavacca
,
F.
, and
Pennati
,
G.
,
2012
, “
Respiratory Effects on Hemodynamics in Patient-Specific CFD Models of the Fontan Circulation Under Exercise Conditions
,”
Eur. J. Mech. B
,
35
, pp.
61
6
910.1016/j.euromechflu.2012.01.012.
15.
Snyder
,
M. F.
, and
Rideout
,
V. C.
,
1969
, “
Computer Simulation Studies of the Venous Circulation
,”
IEEE Trans. Biomed Eng.
,
16
(
4
), pp.
325
334
.10.1109/TBME.1969.4502663
16.
Kung
,
E.
,
Baretta
,
A.
,
Baker
,
C.
,
Arbia
,
G.
,
Biglino
,
G.
,
Corsini
,
C.
,
Schievano
,
S.
,
Vignon-Clementel
,
I. E.
,
Dubini
,
G.
, and
Pennati
,
G.
,
2012
, “
Predictive Modeling of the Virtual Hemi-Fontan Operation for Second Stage Single Ventricle Palliation: Two Patient-Specific Cases
,”
J. Biomech.
,
46
, pp.
423
429
.10.1016/j.jbiomech.2012.10.023
17.
Migliavacca
,
F.
,
Pennati
,
G.
,
Dubini
,
G.
,
Fumero
,
R.
,
Pietrabissa
,
R.
,
Urcelay
,
G.
,
Bove
,
E.
,
Hsia
,
T.
, and
De Leval
,
M.
,
2001
, “
Modeling of the Norwood Circulation: Effects of Shunt Size, Vascular Resistances, and Heart Rate
,”
Am. J. Physiol. Heart Circ. Physiol.
,
280
(
5
), pp.
H2076
H2086
. Available at: http://ajpheart.physiology.org/content/280/5/H2076
18.
Corsini
,
C.
,
Baker
,
C.
,
Kung
,
E.
,
Schievano
,
S.
,
Arbia
,
G.
,
Baretta
,
A.
,
Biglino
,
G.
,
Migliavacca
,
F.
,
Dubini
,
G.
, and
Pennati
,
G.
,
2013
, “
An Integrated Approach to Patient-Specific Predictive Modeling for Single Ventricle Heart Palliation
,”
Comput. Methods Biomech. Biomed. Eng
, (in press).10.1080/10255842.2012.758254
19.
Giardini
,
A.
,
Balducci
,
A.
,
Specchia
,
S.
,
Gargiulo
,
G.
,
Bonvicini
,
M.
, and
Picchio
,
F.
,
2008
, “
Effect of Sildenafil on Haemodynamic Response to Exercise and Exercise Capacity in Fontan Patients
,”
Eur. Heart J.
,
29
(
13
), pp.
1681
1687
.10.1093/eurheartj/ehn215
20.
Gabrielsen
,
A.
,
Videbaek
,
R.
,
Schou
,
M.
,
Damgaard
,
M.
,
Kastrup
,
J.
, and
Norsk
,
P.
,
2002
, “
Non-Invasive Measurement of Cardiac Output in Heart Failure Patients Using a New Foreign Gas Rebreathing Technique
,”
Clin. Sci.
,
102
(
2
), pp.
247
252
.10.1042/CS20010158
21.
Sheth
,
S. S.
,
Maxey
,
D. M.
,
Drain
,
A. E.
, and
Feinstein
,
J. A.
,
2012
, “
Validation of the Innocor Device for Noninvasive Measurement of Oxygen Consumption in Children and Adults
,”
Pediatr. Cardiol.
,
34
, pp.
847
852
.10.1007/s00246-012-0555-6
22.
West
,
G. B.
, and
Brown
,
J. H.
,
2005
, “
The Origin of Allometric Scaling Laws in Biology From Genomes to Ecosystems: Towards a Quantitative Unifying Theory of Biological Structure and Organization
,”
J. Exp. Biol.
,
208
(
Pt 9
), pp.
1575
1592
.10.1242/jeb.01589
23.
Dewey
,
F. E.
,
Rosenthal
,
D.
,
Murphy
,
D. J.
,
Froelicher
,
V. F.
, and
Ashley
,
E. A.
,
2008
, “
Does Size Matter? Clinical Applications of Scaling Cardiac Size and Function for Body Size
,”
Circulation
,
117
(
17
), pp.
2279
2287
.10.1161/CIRCULATIONAHA.107.736785
24.
Gewillig
,
M.
,
Brown
,
S. C.
,
Eyskens
,
B.
,
Heying
,
R.
,
Ganame
,
J.
,
Budts
,
W.
,
La Gerche
,
A.
, and
Gorenflo
,
M.
,
2010
, “
The Fontan Circulation: Who Controls Cardiac Output?
,”
Interact. Cardiovasc. Thorac. Surg.
,
10
(
3
), pp.
428
433
.10.1510/icvts.2009.218594
25.
Stickland
,
M. K.
,
Welsh
,
R. C.
,
Petersen
,
S. R.
,
Tyberg
,
J. V.
,
Anderson
,
W. D.
,
Jones
,
R. L.
,
Taylor
,
D. A.
,
Bouffard
,
M.
, and
Haykowsky
,
M. J.
,
2006
, “
Does Fitness Level Modulate the Cardiovascular Hemodynamic Response to Exercise?
,”
J. Appl. Physiol.
,
100
(
6
), pp.
1895
1901
.10.1152/japplphysiol.01485.2005
26.
Cui
,
W.
,
Roberson
,
D.
,
Chen
,
Z.
,
Madronero
,
L.
, and
Cuneo
,
B.
,
2008
, “
Systolic and Diastolic Time Intervals Measured from Doppler Tissue Imaging: Normal Values and Z-Score Tables, and Effects of Age, Heart Rate, and Body Surface Area
,”
J. Am. Soc. Echocardiogr.
,
21
(
4
), pp.
361
370
.10.1016/j.echo.2007.05.034
27.
Gemignani
,
V.
,
Bianchini
,
E.
,
Faita
,
F.
,
Giannoni
,
M.
,
Pasanisi
,
E.
,
Picano
,
E.
, and
Bombardini
,
T.
,
2008
, “
Assessment of Cardiologic Systole and Diastole Duration in Exercise Stress Tests With a Transcutaneous Accelerometer Sensor
,”
Comput. Cardiol.
,
35
, pp.
153
156
.10.1109/CIC.2008.4749000
28.
Mitchell
,
J. H.
,
1963
, “
Mechanisms of Adaptation of the Left Ventricle to Muscular Exercise
,”
Pediatrics
,
32
(
4
), pp.
660
670
. Available at: http://pediatrics.aappublications.org/content/32/4/660.short
29.
Alpert
,
B. S.
,
Benson
,
L.
, and
Olley
,
P. M.
,
1981
, “
Peak Left Ventricular Pressure/Volume (Emax) During Exercise in Control Subjects and Children With Left-Sided Cardiac Disease
,”
Cathet. Cardiovasc. Diagn.
,
7
(
2
), pp.
145
153
.10.1002/ccd.1810070204
30.
Bombardini
,
T.
,
Nevola
,
E.
,
Giorgetti
,
A.
,
Landi
,
P.
,
Picano
,
E.
, and
Neglia
,
D.
,
2008
, “
Prognostic Value of Left-Ventricular and Peripheral Vascular Performance in Patients With Dilated Cardiomyopathy
,”
J. Nucl. Cardiol.
,
15
(
3
), pp.
353
362
.10.1016/j.nuclcard.2008.02.010
31.
Dexter
,
L.
,
Whittenberger
,
J. L.
,
Haynes
,
F. W.
,
Goodale
,
W. T.
,
Gorlin
,
R.
, and
Sawyer
,
C. G.
,
1951
, “
Effect of Exercise on Circulatory Dynamics of Normal Individuals
,”
J. Appl. Physiol.
,
3
(
8
), pp.
439
453
. Available at: http://journals.lww.com/ajpmr/Citation/1952/12000/Effect_of_Exercise_on_Circulatory_Dynamics_of.7.aspx
32.
Kasalický
,
J.
,
Hurych
,
J.
,
Widimský
,
J.
,
Dejdar
,
R.
,
Metys
,
R.
, and
Stanĕk
,
V.
,
1968
, “
Left Heart Haemodynamics at Rest and During Exercise in Patients With Mitral Stenosis
,”
Br. Heart J.
,
30
(
2
), pp.
188
195
.10.1136/hrt.30.2.188
33.
Yu
,
P. N.
,
Murphy
,
G. W.
,
Schreiner
, Jr,
B. F.
, and
James
,
D. H.
,
1967
, “
Distensibility Characteristics of the Human Pulmonary Vascular Bed: Study of the Pressure-Volume Response to Exercise in Patients With and Without Heart Disease
,”
Circulation
,
35
(
4
), pp.
710
723
.10.1161/01.CIR.35.4.710
34.
Ekelund
,
L. G.
, and
Holmgren
,
A.
,
1964
, “
Circulatory and Respiratory Adaptation, During Long‐Term, Non‐Steady State Exercise, in the Sitting Position
,”
Acta Physiol. Scand.
,
62
(
3
), pp.
240
255
.10.1111/j.1748-1716.1964.tb03971.x
35.
Holmgren
,
A.
,
Jonsson
,
B.
, and
Sjöstrand
,
T.
,
1960
, “
Circulatory Data in Normal Subjects at Rest and During Exercise in Recumbent Position, With Special Reference to the Stroke Volume at Different Work Intensities
,”
Acta Physiol. Scand.
,
49
(
4
), pp.
343
363
.10.1111/j.1748-1716.1960.tb01957.x
36.
Luepker
,
R. V.
,
Holmberg
,
S.
, and
Varnauskas
,
E.
,
1971
, “
Left Atrial Pressure During Exercise in Hemodynamic Normals
,”
Am. Heart J.
,
81
(
4
), pp.
494
497
.10.1016/0002-8703(71)90364-4
37.
Slonim
,
N. B.
,
Ravin
,
A.
,
Balchum
,
O. J.
, and
Dressler
,
S. H.
,
1954
, “
The Effect of Mild Exercise in the Supine Position on the Pulmonary Arterial Pressure of Five Normal Human Subjects
,”
J. Clin. Invest.
,
33
(
7
), pp.
1022
1030
.10.1172/JCI102969
38.
Barratt-Boyes
,
B. G.
, and
Wood
,
E. H.
,
1957
, “
Hemodynamic Response of Healthy Subjects to Exercise in the Supine Position While Breathing Oxygen
,”
J. Appl. Physiol.
,
11
(
1
), pp.
129
135
. Available at: http://jap.physiology.org/content/11/1/129.short
39.
Sancetta
,
S. M.
, and
Rakita
,
L.
,
1957
, “
Response of Pulmonary Artery Pressure and Total Pulmonary Resistance of Untrained, Convalescent Man to Prolonged Mild Steady State Exercise
,”
J. Clin. Invest.
,
36
(
7
), pp.
1138
1149
.10.1172/JCI103510
40.
Widimsky
,
J.
,
Berglund
,
E.
, and
Malmberg
,
R.
,
1963
, “
Effect of Repeated Exercise on the Lesser Circulation
,”
J. Appl. Physiol.
,
18
(
5
), pp.
983
986
. Available at: http://jap.physiology.org/content/18/5/983.short
41.
Wallace
,
A. G.
,
Mitchell
,
J. H.
,
Skinner
,
N. S.
, and
Sarnoff
,
S. J.
,
1963
, “
Hemodynamic Variables Affecting the Relation Between Mean Left Atrial and Left Ventricular End-Diastolic Pressures
,”
Circ. Res.
,
13
, pp.
261
270
.10.1161/01.RES.13.3.261
42.
Manohar
,
M.
,
1993
, “
Pulmonary Artery Wedge Pressure Increases With High-Intensity Exercise in Horses
,”
Am. J. Vet. Res.
,
54
(
1
), pp.
142
146
. Available at: http://www.ncbi.nlm.nih.gov/pubmed/8427458
43.
Cheng
,
C. P.
,
Igarashi
,
Y.
, and
Little
,
W. C.
,
1992
, “
Mechanism of Augmented Rate of Left Ventricular Filling During Exercise
,”
Circ. Res.
,
70
(
1
), pp.
9
19
.10.1161/01.RES.70.1.9
44.
Nevsky
,
G.
,
Jacobs
,
J. E.
,
Lim
,
R. P.
,
Donnino
,
R.
,
Babb
,
J. S.
, and
Srichai
,
M. B.
,
2011
, “
Sex-Specific Normalized Reference Values of Heart and Great Vessel Dimensions in Cardiac CT Angiography
,”
AJR Am. J. Roentgenol.
,
196
(
4
), pp.
788
794
.10.2214/AJR.10.4990
45.
Carroll
,
J. D.
,
Hess
,
O. M.
,
Hirzel
,
H. O.
, and
Krayenbuehl
,
H. P.
,
1983
, “
Dynamics of Left Ventricular Filling at Rest and During Exercise
,”
Circulation
,
68
(
1
), pp.
59
67
.10.1161/01.CIR.68.1.59
46.
Grimby
,
G.
,
Goldman
,
M.
, and
Mead
,
J.
,
1976
, “
Respiratory Muscle Action Inferred from Rib Cage and Abdominal Vp Partitioning
,”
J. Appl. Physiol.
,
41
(
5
), pp.
739
751
. Available at: http://www.jappl.org/content/41/5/739.short
47.
Armstrong
,
R. B.
,
Delp
,
M. D.
,
Goljan
,
E. F.
, and
Laughlin
,
M. H.
,
1987
, “
Distribution of Blood Flow in Muscles of Miniature Swine During Exercise
,”
J. Appl. Physiol.
,
62
(
3
), pp.
1285
1298
. Avaiable at: http://www.jappl.org/content/62/3/1285.short
48.
Pennati
,
G.
, and
Fumero
,
R.
,
2000
, “
Scaling Approach to Study the Changes Through the Gestation of Human Fetal Cardiac and Circulatory Behaviors
,”
Ann. Biomed. Eng.
,
28
, pp.
442
452
.10.1114/1.282
49.
Clausen
,
J. P.
,
Klausen
,
K.
,
Rasmussen
,
B.
, and
Trap-Jensen
,
J.
,
1973
, “
Central and Peripheral Circulatory Changes After Training of the Arms or Legs
,”
Am. J. Physiol.
,
225
(
3
), pp.
675
682
. Available at: http://ajplegacy.physiology.org/content/225/3/675.extract
50.
Hjortdal
,
V. E.
,
Emmertsen
,
K.
,
Stenbøg
,
E.
,
Fründ
,
T.
,
Schmidt
,
M. R.
,
Kromann
,
O.
,
Sørensen
,
K.
, and
Pedersen
,
E. M.
,
2003
, “
Effects of Exercise and Respiration on Blood Flow in Total Cavopulmonary Connection: A Real-Time Magnetic Resonance Flow Study
,”
Circulation
,
108
(
10
), pp.
1227
1231
.10.1161/01.CIR.0000087406.27922.6B
51.
Marsden
,
A. L.
,
Reddy
,
V. M.
,
Shadden
,
S. C.
,
Chan
,
F. P.
,
Taylor
,
C. A.
, and
Feinstein
,
J. A.
,
2010
, “
A New Multiparameter Approach to Computational Simulation for Fontan Assessment and Redesign
,”
Congenit Heart Dis.
,
5
(
2
), pp.
104
117
.10.1111/j.1747-0803.2010.00383.x
52.
Koeken
,
Y.
,
Arts
,
T.
, and
Delhaas
,
T.
,
2012
, “
Simulation of the Fontan Circulation During Rest and Exercise
,”
Annual International Conference of the IEEE Engineering in Medicine and Biology Society
,
San Diego, CA
, Aug. 28–Sept. 1, 2012, pp.
6673
6676
.
53.
Sundareswaran
,
K. S.
,
Pekkan
,
K.
,
Dasi
,
L. P.
,
Whitehead
,
K.
,
Sharma
,
S.
,
Kanter
,
K. R.
,
Fogel
,
M. A.
, and
Yoganathan
,
A. P.
,
2008
, “
The Total Cavopulmonary Connection Resistance: A Significant Impact on Single Ventricle Hemodynamics at Rest and Exercise
,”
Am. J. Physiol. Heart Circ. Physiol.
,
295
(
6
), pp.
H2427
H2435
.10.1152/ajpheart.00628.2008
54.
Folkow
,
B.
,
Gaskell
,
P.
, and
Waaler
,
B. A.
,
1970
, “
Blood Flow through Limb Muscles During Heavy Rhythmic Exercise
,”
Acta Physiol. Scand.
,
80
(
1
), pp.
61
72
.10.1111/j.1748-1716.1970.tb04770.x
55.
Suga
,
H.
,
Sagawa
,
K.
, and
Shoukas
,
A. A.
,
1973
, “
Load Independence of the Instantaneous Pressure-Volume Ratio of the Canine Left Ventricle and Effects of Epinephrine and Heart Rate on the Ratio
,”
Circulation Research
,
32
(
3
), pp.
314–322
.10.1161/01.RES.32.3.314
56.
Senzaki
,
H.
,
Chen
,
C.
, and
Kass
,
D.
,
1996
, “
Single-Beat Estimation of End-Systolic Pressure-Volume Relation in Humans: A New Method with the Potential for Noninvasive Application
,”
Circulation
,
94
(
10
), pp.
2497–2506
.10.1161/01.CIR.94.10.2497
57.
Segers
,
P.
,
Stergiopulos
,
N.
,
Westerhof
,
N.
,
Wouters
,
P.
,
Kolh
,
P.
, and
Verdonck
,
P.
,
2003
, “
Systemic and Pulmonary Hemodynamics Assessed With a Lumped-Parameter Heart-Arterial Interaction Model
,”
J. Eng. Math.
,
47
, pp.
185–199
.10.1023/B:ENGI.0000007975.27377.9c
58.
Avanzolini
,
G.
,
Barbini
,
P.
,
Cappello
,
A.
, and
Cevese
,
A.
,
1985
, “
Time-Varying Mechanical Properties of the Left Ventricle-A Computer Simulation
,”
Biomed. Eng. IEEE Trans.
,
10
, pp.
756–763
.10.1109/TBME.1985.325490
59.
Lau
,
V.-K.
, and
Sagawa
,
K.
,
1979
, “
Model Analysis of the Contribution of Atrial Contraction to Ventricular Filling
,”
Ann. Biomed. Eng.
,
7
(
2
), pp.
167–201
.10.1007/BF02363133
60.
Peskin
,
C. S.
,
1982
, “
The Fluid Dynamics of Heart Valves: Experimental, Theoretical, and Computational Methods
,”
Ann. Rev. Fluid Mech.
,
14
(
1
), pp.
235–259
.10.1146/annurev.fl.14.010182.001315
You do not currently have access to this content.