Knee joint stability is important in maintaining normal joint motion during activities of daily living. Joint instability not only disrupts normal motion but also plays a crucial role in the initiation and progression of osteoarthritis. Our goal was to examine knee joint coronal plane stability under varus or valgus loading and to understand the relative contributions of the mechanisms that act to stabilize the knee in response to varus–valgus moments, namely, load distribution between the medial and lateral condyles and the ligaments. A robot testing system was used to determine joint stability in human cadaveric knees as described by the moment versus angular rotation behavior under varus and valgus loads at extension and at 30 deg and 90 deg of flexion. The anatomic knee joint was more stable in response to valgus than varus moments, and stability decreased with flexion angle. The primary mechanism for providing varus–valgus stability was the redistribution of the contact force on the articular surfaces from both condyles to a single condyle. Stretching of the collateral ligaments provided a secondary stabilizing mechanism after the lift-off of a condyle occurred. Compressive loads applied across the knee joint, such as would occur with the application of muscle forces, enhanced the ability of the articular surface to provide varus–valgus moment, and thus, helped stabilize the joint in the coronal plane. Coupled internal/external rotations and anteroposterior and medial–lateral translations were variable and in the case of the rotations were often as large as the varus–valgus rotations created by the applied moment.

References

References
1.
Bendjaballah
,
M. Z.
,
Shirazi-Adl
,
A.
, and
Zukor
,
D. J.
,
1997
, “
Finite Element Analysis of Human Knee Joint in Varus-Valgus
,”
Clin. Biomech. Bristol, UK
,
12
(
3
), pp.
139
148
.10.1016/S0268-0033(97)00072-7
2.
Andriacchi
,
T. P.
,
Sharma
,
L.
,
Hurwitz
,
D. E.
,
Thonar
,
E. I.
,
Sum
,
J. A.
,
Lenz
,
M. E.
,
Dunlop
,
D. D.
,
Schnitzer
,
T. J.
, and
Kirwan-Mellis
,
G.
,
1981
, “
Knee Adduction Moment, Serum Hyaluronic Acid Level, and Disease Severity in Medial Tibiofemoral Osteoarthritis
,”
Arthritis Rheum.
,
41
, pp.
1233
1240
.10.1002/1529-0131(199807)41:7<1233::AID-ART14>3.0.CO;2-L
3.
Buchanan
,
T. S.
, and
Lloyd
,
D. G.
,
1996
, “
A Model of Load Sharing Between Muscles and Soft Tissues at the Human Knee During Static Tasks
,”
ASME J. Biomech. Eng.
,
118
(
4
), pp.
367
376
.10.1115/1.2796044
4.
Brown
,
T. D.
,
Tochigi
,
Y.
,
Vaseenon
,
T.
,
Heiner
,
A. D.
,
Fredericks
,
D. C.
,
Martin
,
J. A.
,
Rudert
,
M. J.
,
Hillis
,
S. L.
, and
Mckinley
,
T. O.
,
2011
, “
Instability Dependency of Osteoarthritis Development in a Rabbit Model of Graded Anterior Cruciate Ligament Transaction
,”
J. Bone Joint Surg. Am.
,
93
, pp.
640
647
.10.2106/JBJS.J.00150
5.
Burstein
,
A. H.
, and
Wright
,
T. M.
,
1994
,
Fundamentals of Orthopaedic Biomechanics
,
Williams & Wilkins
,
Baltimore
, pp.
73
86
.
6.
Markolf
,
K. L.
,
Bargar
,
W. L.
,
Shoemaker
,
S. C.
, and
Amstutz
,
H. C.
,
1981
, “
The Role of Joint Load in Knee Stability
,”
J. Bone Joint Surg. Am.
,
63
, pp.
570
585
.
7.
Wilson
,
W. T.
,
Deakin
,
A. H.
,
Payne
,
A. P.
,
Picard
,
F.
, and
Wearing
,
S. C.
,
2012
, “
Comparative Analysis of the Structural Properties of the Collateral Ligaments of the Human Knee
,”
J. Orthop. Sports Phys. Ther.
,
42
, pp.
345
351
.10.2519/jospt.2012.3919
8.
Robinson
,
J. R.
,
Bull
,
A. M.
, and
Amis
,
A. A.
,
2005
, “
Structural Properties of the Medial Collateral Ligament Complex of the Human Knee
,”
J. Biomech.
,
38
, pp.
1067
1074
.10.1016/j.jbiomech.2004.05.034
9.
Wijdicks
,
C. A.
,
Ewart
,
D. T.
,
Nuckley
,
D. J.
,
Johansen
,
S.
,
Engebretsen
,
L.
, and
Laprade
,
R. F.
,
2010
, “
Structural Properties of the Primary Medial Knee Ligaments
,”
Am. J. Sports Med.
,
38
, pp.
1638
1646
.10.1177/0363546510363465
10.
LaPrade
,
R. F.
,
Engebretsen
,
A. H.
,
Ly
,
T. V.
,
Johansen
,
S.
,
Wentorf
,
F. A.
, and
Engebretsen
,
L.
,
2007
, “
The Anatomy of the Medial Part of the Knee
,”
J. Bone Joint Surg. Am.
,
89
, pp.
2000
2010
.10.2106/JBJS.F.01176
11.
LaPrade
,
R. F.
,
Bollom
,
T. S.
,
Wentorf
,
F. A.
,
Wills
,
N. J.
, and
Meister
,
K.
,
2005
, “
Mechanical Properties of the Posterolateral Structures of the Knee
,”
Am. J. Sports Med.
,
33
, pp.
1386
1391
.10.1177/0363546504274143
12.
LaPrade
,
R. F.
,
Morgan
,
P. M.
,
Wentorf
,
F. A.
,
Johansen
,
S.
, and
Engebretsen
,
L.
,
2007
, “
The Anatomy of the Posterior Aspect of the Knee—An Anatomic Study
,”
J. Bone Joint Surg. Am.
,
89
, pp.
758
764
.10.2106/JBJS.F.00120
13.
Dye
,
S. F.
,
2001
, “
Functional Morphologic Features of the Human Knee: An Evolutionary Perspective
,”
Clin. Orthop. Relat. Res.
,
410
, pp.
19
24
.10.1097/01.blo.0000063563.90853.23
14.
Shultz
,
S. J.
,
Shimokochi
,
Y.
,
Nguyen
,
A. D.
,
Schmitz
,
R. J.
,
Beynnon
,
B. D.
, and
Perrin
,
D. H.
,
2007
, “
Measurement of Varus-Valgus and Internal-External Rotational Knee Laxities in Vivo—Part II: Relationship With Anterior-Posterior and General Joint Laxity in Males and Females
,”
J. Orthop. Res.
,
25
, pp.
989
996
.10.1002/jor.20398
15.
Fujie
,
H.
,
Livesay
,
G. A.
,
Fujita
,
M.
, and
Woo
,
S. L.
,
1996
, “
Forces and Moments in Six DOF at the Human Knee Joint: Mathematical Description for Control
,”
J. Biomech.
,
29
, pp.
1577
1585
.10.1016/S0021-9290(96)80009-1
16.
Imhauser
,
C.
,
Mauro
,
C.
,
Choi
,
D.
,
Rosenberg
,
E.
,
Mathew
,
S.
,
Nguyen
,
J.
,
Ma
,
Y.
, and
Wickiewicz
,
T.
,
2013
, “
Abnormal Tibiofemoral Contact Stress and its Association With Altered Kinematics After Center-Center Anterior Cruciate Ligament Reconstruction: An in Vitro Study
,”
Am. J. Sports Med.
,
41
, pp.
815
825
.10.1177/0363546512475205
17.
Grood
,
E. S.
, and
Sunday
,
W. J.
,
1983
, “
A Joint Coordinate System for the Clinical Description of Three-Dimensional Motions: Application to the Knee
,”
ASME J. Biomech. Eng.
,
105
(
2
), pp.
136
144
.10.1115/1.3138397
18.
Andriacchi
,
T. P.
,
Mündermann
,
A.
,
Dyrby
,
C. O.
,
D'Lima
,
D. D.
, and
Colwell
,
C. W.
, Jr.
,
2008
, “
In Vivo Knee Loading Characteristics During Activities of Daily Living as Measured by an Instrumented Total Knee Replacement
,”
J. Orthop. Res.
,
26
, pp.
1167
1172
.10.1002/jor.20655
19.
Heinlein
,
B.
,
Kutzner
,
I.
,
Graichen
,
F.
,
Bender
,
A.
,
Rohlmann
,
A.
,
Halder
,
A. M.
,
Beier
,
A.
, and
Bergmann
,
G.
,
2009
, “
Complete Data of Total Knee Replacement Loading for Level Walking and Stair Climbing Measured In Vivo With a Follow-Up of 6–10 Months
,”
Clin. Biomech.
,
24
, pp.
315
326
.10.1016/j.clinbiomech.2009.01.011
20.
Sugar
,
D. A.
,
Hurwitz
,
D. E.
,
Sumner
,
D. R.
, and
Andriacchi
,
T. P.
,
1998
, “
Dynamic Knee Loads During Gait Predict Proximal Tibial Bone Distribution
,”
J. Biomech.
,
31
, pp.
423
430
.10.1016/S0021-9290(98)00028-1
21.
Li
,
G.
,
Varadarajan
,
K. M.
,
Moynihan
,
A. L.
,
D'Lima
,
D.
, and
Colwell
,
C. W.
,
2008
, “
In Vivo Contact Kinematics and Contact Forces of the Knee After Total Knee Arthroplasty During Dynamic Weight-Bearing Activities
,”
J. Biomech.
,
41
, pp.
2159
2168
.10.1016/j.jbiomech.2008.04.021
22.
Bogert
,
A. J.
,
Barsoum
,
W. K.
,
Lee
,
H. H.
,
Murray
,
T. G.
,
Golbrunn
,
R.
,
Klika
,
A. K.
, and
Sutler
,
S.
,
2011
, “
Robotic Testing of Proximal Tibio-Fibular Joint Kinematics for Measuring Instability Following Total Knee Arthroplasty
,”
J. Orthop. Res.
,
29
, pp.
47
52
.10.1002/jor.21207
23.
Woo
,
S. L.
,
Debski
,
R. E.
,
Withrow
,
J. D.
, and
Janaushek
,
M. A.
,
1999
, “
Biomechanics of Knee Ligaments
,”
Am. J. Sports Med.
,
27
, pp.
533
543
.
24.
Gardiner
,
J. C.
,
Weiss
,
J. A.
, and
Rosenberg
,
T. D.
,
2001
, “
Strain in the Human Medial Collateral Ligament During Valgus Loading of the Knee
,”
Clin. Orthop. Relat. Res.
,
391
, pp.
266
274
.10.1097/00003086-200110000-00031
25.
Li
,
G.
,
DeFrate
,
L. E.
,
Zayontz
,
S.
,
Park
,
S. E.
, and
Gill
,
T. J.
,
2004
, “
The Effect of Tibiofemoral Joint Kinematics on Patellofemoral Contact Pressures Under Simulated Muscle Loads
,”
J. Orthop. Res.
,
22
, pp.
801
806
.10.1016/j.orthres.2003.11.011
You do not currently have access to this content.