Stapedial annular ligament (SAL) is located at the end of human ear ossicular chain and provides a sealed but mobile boundary between the stapes footplate and cochlear fluid. Mechanical properties of the SAL directly affect the acoustic-mechanical transmission of the middle ear and the changes of SAL mechanical properties in diseases (e.g., otosclerosis) may cause severe conductive hearing loss. However, the mechanical properties of SAL have only been reported once in the literature, which were obtained under quasi-static condition (Gan, R. Z., Yang, F., Zhang, X., and Nakmali, D., 2011, “Mechanical Properties of Stapedial Annular Ligament,” Med. Eng. Phys., 33, pp. 330–339). Recently, the dynamic properties of human SAL were measured in our lab using dynamic-mechanical analyzer (DMA). The test was conducted at the frequency range from 1 to 40 Hz at three different temperatures: 5 °C, 25 °C, and 37 °C. The frequency–temperature superposition (FTS) principle was applied to extend the testing frequency range to a much higher level. The generalized Maxwell model was employed to describe the constitutive relation of the SAL. The storage shear modulus G′ and the loss shear modulus G″ were obtained from seven specimens. The mean storage shear modulus was 31.7 kPa at 1 Hz and 61.9 kPa at 3760 Hz. The mean loss shear modulus was 1.1 kPa at 1 Hz and 6.5 kPa at 3760 Hz. The dynamic properties of human SAL obtained in this study provide a better description of the damping behavior of soft tissues than the classic Rayleigh type damping, which was widely used in the published ear models. The data reported in this study contribute to ear biomechanics and will improve the accuracy of finite element (FE) model of the human ear.

References

References
1.
Bolz
,
E. A.
, and
Lim
,
D. J.
,
1972
, “
Morphology of the Stapediovestibular Joint
,”
Acta Otolaryngol.
,
73
, pp.
10
17
.10.3109/00016487209138188
2.
Wolff
,
D.
, and
Bellucci
,
R.
,
1956
, “
The Human Ossicular Ligaments
,”
Ann. Otol. Rhinol. Laryngol.
,
65
, pp.
895
909
.
3.
Whyte
,
J. R.
,
Gonzalez
,
L.
,
Cisneros
,
A. I.
,
Yus
,
C.
,
Torres
,
A.
, and
Sarrat
,
R.
,
2002
, “
Fetal Development of the Human Tympanic Osscular Chain Articulations
,”
Cells Tissues Organs
,
171
, pp.
241
249
.10.1159/000063124
4.
Brunner
,
H.
,
1954
, “
Attachment of the Stapes to the Oval Window in Man
,”
Archiv. Otolaryngol.
,
59
, pp.
18
29
.10.1001/archotol.1954.00710050030002
5.
von Békésy
,
G.
,
1960
,
Experiments in Hearing
,
McGraw-Hill Book Company
,
New York
.
6.
Gyo
,
K.
,
Aritomo
,
H.
, and
Goode
,
R. L.
,
1987
, “
Measurement of the Ossicular Vibration Ratio in Human Temporal Bones by Use of a Video Measuring System
,”
Acta Otolaryngol.
,
103
, pp.
87
95
.10.3109/00016488709134702
7.
Feng
,
B.
, and
Gan
,
R. Z.
,
2004
, “
Lumped Parametric Model of the Human Ear for Sound Transmission
,”
Biomech. Model. Mechanobiol.
,
3
, pp.
33
47
.10.1007/s10237-004-0044-9
8.
Schuknecht
,
H.
, and
Barber
,
W.
,
1985
, “
Histologic Variants in Otosclerosis
,”
Laryngoscope
,
95
, pp.
1307
1307
.10.1288/00005537-198511000-00003
9.
Merchant
,
N.
,
Incesulu
,
A.
, and
Glynn
,
R. J.
,
2001
, “
Histologic Studies of the Posterior Stapediovestibular Joint in Otosclerosis
,”
J. Otol. Neurotol.
,
22
, pp.
305
310
.10.1097/00129492-200105000-00006
10.
Causse
,
J. B.
,
Lopez
,
A.
,
Juberthie
,
L.
, and
Olivier
,
J. C.
,
1991
, “
Stapedotomy: The JB Causse Technique
,”
Ann. Acad. Med. Singapore
,
20
, pp.
618
623
.
11.
Lopez
,
A.
,
Juberthie
,
L.
,
Olivier
,
J. C.
,
Causse
,
J. B.
, and
Robinson
,
J.
,
1992
, “
Survival and Evolution of Vein Grafts in Otosclerosis Surgery: Structural and Ultrastructural Evidence
,”
Am. J. Otol.
,
13
, pp.
173
184
.
12.
Hüttenbrink
,
K. B.
,
2003
, “
Biomechanics of Stapesplasty: A Review
,”
Otol. Neurotol.
,
24
, pp.
548
557
.10.1097/00129492-200307000-00004
13.
Gan
,
R. Z.
,
Yang
,
F.
,
Zhang
,
X.
, and
Nakmali
,
D.
,
2011
, “
Mechanical Properties of Stapedial Annular Ligament
,”
Med. Eng. Phys.
,
33
, pp.
330
339
.10.1016/j.medengphy.2010.10.022
14.
Gan
,
R. Z.
,
Sun
,
Q.
,
Feng
,
B.
, and
Wood
,
M. W.
,
2006
, “
Acoustic-Structural Coupled Finite Element Analysis for Sound Transmission in Human Ear—Pressure Distributions
,”
Med. Eng. Phys.
,
28
, pp.
395
404
.10.1016/j.medengphy.2005.07.018
15.
Gan
,
R. Z.
,
Reeves
,
B. P.
, and
Wang
,
X.
,
2007
, “
Modeling of Sound Transmission From Ear Canal to Cochlea
,”
Ann. Biomed. Eng.
,
35
, pp.
2180
2195
.10.1007/s10439-007-9366-y
16.
Wada
,
H.
,
Metoki
,
T.
, and
Kobayashi
,
T.
,
1992
, “
Analysis of Dynamic Behavior of Human Middle Ear Using a Finite-Element Method
,”
J. Acoust. Soc. Am.
,
92
, pp.
3157
3168
.10.1121/1.404211
17.
Zhang
,
X.
, and
Gan
,
R. Z.
,
2013
, “
Dynamic Properties of Human Tympanic Membrane Based on Frequency-Temperature Superposition
,”
Ann. Biomed. Eng.
,
41
, pp.
205
214
.10.1007/s10439-012-0624-2
18.
Ferry
,
J. D.
,
1980
,
Viscoelastic Properties of Polymer
,
3rd ed.
,
Wiley
,
New York
.
19.
Nielsen
,
L. E.
, and
Landel
,
R. F.
,
1994
,
Mechanical Properties of Polymers and Composites
,
2nd ed.
,
Marcel Dekker
,
New York
.
20.
Hagr
,
A. A.
,
Funnell
,
W. R.
,
Zeitouni
,
A. G.
, and
Rappaport
,
J. M.
,
2004
, “
High-Resolution X-Ray Computed Tomographic Scanning of the Human Stapes Footplate
,”
J. Otolaryngol.
,
33
, pp.
217
221
.10.2310/7070.2004.03075
21.
Wang
,
H.
,
Northrop
,
C.
,
Burgess
,
B.
,
Liberman
,
M. C.
, and
Merchant
,
S. N.
,
2006
, “
Three-Dimensional Virtual Model of the Human Temporal Bone: A Stand-Alone, Downloadable Teaching Tool
,”
Otol. Neurotol.
,
27
, pp.
452
457
.10.1097/00129492-200606000-00004
22.
Chan
,
R. W.
,
2001
, “
Estimation of Viscoelastic Shear Properties of Vocal-Fold Tissues Based on Time-Temperature Superposition
,”
J. Acoust. Soc. Am.
,
110
, pp.
1548
1561
.10.1121/1.1387094
23.
Ferry
,
J. D.
,
1950
, “
Mechanical Properties of Substances of High Molecular Weight.6. Dispersion in Concentrated Polymer Solutions and Its Dependence on Temperature and Concentration
,”
J. Am. Chem. Soc.
,
72
, pp.
3746
3752
.10.1021/ja01164a117
24.
Williams
,
M. L.
,
Landel
,
R. F.
, and
Ferry
,
J. D.
,
1955
, “
Temperature Dependence of Relaxation Mechanisms in Amorphous Polymers and Other Glass-Forming Liquids
,”
J. Am. Chem. Soc.
,
77
, pp.
3701
3707
.10.1021/ja01619a008
25.
Radebaugh
,
G. W.
, and
Simonelli
,
A. P.
,
1983
, “
Temperature-Frequency Equivalence of the Viscoelastic Properties of Anhydrous Lanolin USP
,”
J. Pharm. Sci.
,
72
, pp.
422
425
.10.1002/jps.2600720424
26.
Peters
,
G. W.
,
Meulman
,
J. H.
, and
Sauren
,
A. A.
,
1997
, “
The Applicability of the Time/Temperature Superposition Principle to Brain Tissue
,”
Biorheology
,
34
, pp.
127
138
.10.1016/S0006-355X(97)00009-7
27.
Ward
,
I. M.
,
1971
,
Mechanical Properties of Solid Polymers
,
Wiley
,
New York
.
28.
Gan
,
R. Z.
,
Feng
,
B.
, and
Sun
,
Q.
,
2004
, “
Three-Dimensional Finite Element Modeling of Human Ear for Sound Transmission
,”
Ann. Biomed. Eng.
,
32
, pp.
847
859
.10.1023/B:ABME.0000030260.22737.53
29.
Zhao
,
F.
,
Koike
,
T.
,
Wang
,
J.
,
Sienz
,
H.
, and
Meredith
,
R.
,
2009
, “
Finite Element Analysis of the Middle Ear Transfer Functions and Related Pathologies
,”
Med. Eng. Phys.
,
31
, pp.
907
916
.10.1016/j.medengphy.2009.06.009
30.
Zhang
,
X.
, and
Gan
,
R. Z.
,
2011
, “
A Comprehensive Model of Human Ear for Analysis of Implantable Hearing Devices
,”
IEEE Trans. Biomed. Eng.
,
58
, pp.
3024
3027
.10.1109/TBME.2011.2159714
You do not currently have access to this content.