A computational methodology for simulating virtual inferior vena cava (IVC) filter placement and IVC hemodynamics was developed and demonstrated in two patient-specific IVC geometries: a left-sided IVC and an IVC with a retroaortic left renal vein. An inverse analysis was performed to obtain the approximate in vivo stress state for each patient vein using nonlinear finite element analysis (FEA). Contact modeling was then used to simulate IVC filter placement. Contact area, contact normal force, and maximum vein displacements were higher in the retroaortic IVC than in the left-sided IVC (144 mm2, 0.47 N, and 1.49 mm versus 68 mm2, 0.22 N, and 1.01 mm, respectively). Hemodynamics were simulated using computational fluid dynamics (CFD), with four cases for each patient-specific vein: (1) IVC only, (2) IVC with a placed filter, (3) IVC with a placed filter and model embolus, all at resting flow conditions, and (4) IVC with a placed filter and model embolus at exercise flow conditions. Significant hemodynamic differences were observed between the two patient IVCs, with the development of a right-sided jet, larger flow recirculation regions, and lower maximum flow velocities in the left-sided IVC. These results support further investigation of IVC filter placement and hemodynamics on a patient-specific basis.

References

References
1.
Wakefield
,
T. W.
,
Caprini
,
J.
, and
Comerota
,
A. J.
,
2008
, “
Thromboembolic Diseases
,”
Curr. Probl. Surg.
,
45
, pp.
844
899
.10.1067/j.cpsurg.2008.08.002
2.
Lee
,
P.
,
Raizada
,
A.
, and
Ciocca
,
R.
,
2009
, “
Growing Utilization of IVC Filter Placement From 2001-2005: Analysis of NIS
,” Society for Clinical Vascular Surgery.
3.
Cipolla
,
J.
,
Weger
,
N. S.
,
Sharma
,
R.
,
Schrag
,
S. P.
,
Sarani
,
B.
,
Truitt
,
M.
,
Lorenzo
,
M.
,
Sims
,
C. A.
,
Kim
,
P. K.
,
Torigian
,
D.
,
Temple-Lykens
,
B.
,
Sicoutris
,
C. P.
, and
Stawicki
,
S. P.
,
2008
, “
Complications of Vena Cava Filters: A Comprehensive Clinical Review
,”
OPUS 12 Scientist
, Vol.
2
, pp.
11
24
.
4.
PREPIC Study Group
,
2005
, “
Eight-Year Follow-Up of Patients With Permanent Vena Cava Filters in the Prevention of Pulmonary Embolism: The PREPIC (Prevention du Risque d'Embolie Pulmonaire par Interruption Cave) Randomized Study
,”
Circulation
,
112
, pp.
416
422
.10.1161/CIRCULATIONAHA.104.512834
5.
Singer
,
M. A.
,
Wang
,
S. L.
, and
Diachin
,
D. P.
,
2010
, “
Design Optimization of Vena Cava Filters: An Application to Dual Filtration Devices
,”
ASME J. Biomech. Eng.
,
132
(
10
), pp.
1
10
.10.1115/1.4002488
6.
Zhang
,
L.
,
Yang
,
G.
,
Shen
,
W.
, and
Qi
,
J.
,
2007
, “
Spectrum of the Inferior Vena Cava: MDCT Findings
,”
Abdom. Imaging
,
32
, pp.
495
503
.10.1007/s00261-006-9137-5
7.
Stewart
,
S. F. C.
,
Robinson
,
R. A.
,
Nelson
,
R. A.
, and
Malinauskas
,
R. A.
,
2008
, “
Effects of Thrombosed Vena Cava Filters on Blood Flow: Flow Visualization and Numerical Modeling
,”
Ann. Biomed. Eng.
,
36
, pp.
1764
1781
.10.1007/s10439-008-9560-6
8.
Couch
,
G. G.
,
Johnston
,
K. W.
, and
Ojha
,
M.
,
2000
, “
An in Vitro Comparison of the Hemodynamics of Two Inferior Vena Cava Filters
,”
J. Vasc. Surg.
,
31
, pp.
539
549
.10.1067/mva.2000.103799
9.
Couch
,
G. G.
,
Kim
,
H.
, and
Ojha
,
M.
,
1997
, “
In Vitro Assessment of the Hemodynamic Effects of a Partial Occlusion in a Vena Cava Filter
,”
J. Vasc. Surg.
,
25
, pp.
663
672
.10.1016/S0741-5214(97)70293-3
10.
Harlal
,
A.
,
Ojha
,
M.
, and
Johnston
,
K. W.
,
2007
, “
Vena Cava Filter Performance Based on Hemodynamics and Reported Thrombosis and Pulmonary Embolism Patterns
,”
J. Vasc. Interv. Radiol.
,
18
, pp.
103
115
.10.1016/j.jvir.2006.10.020
11.
Jaeger
,
H. J.
,
Kolb
,
S.
,
Mair
,
T.
,
Geller
,
M.
,
Christmann
,
A.
,
Kinne
,
R. K. H.
, and
Mathias
,
K. D.
,
1998
, “
In Vitro Model for the Evaluation of Inferior Vena Cava Filters: Effect of Experimental Parameters on Thrombus-Capturing Efficacy of the Vena Tech-LGM Filter
,”
J. Vasc. Interv. Radiol.
,
9
, pp.
295
304
.10.1016/S1051-0443(98)70272-6
12.
Katsamouris
,
A. A.
,
Waltman
,
A. C.
,
Delichatsios
,
M. A.
, and
Athanasoulis
,
C. A.
,
1988
, “
Inferior Vena Cava Filters: In Vitro Comparison of Clot Trapping and Flow Dynamics
,”
Radiology
,
166
, pp.
361
366
.
13.
Leask
,
R. L.
,
Johnston
,
K. W.
, and
Ojha
,
M.
,
2001
, “
In Vitro Hemodynamic Evaluation of a Simon Nitinol Vena Cava Filter: Possible Explanation of IVC Occlusion
,”
J. Vasc. Interv. Radiol.
,
12
, pp.
613
618
.10.1016/S1051-0443(07)61486-9
14.
Leask
,
R. L.
,
Johnston
,
K. W.
, and
Ojha
,
M.
,
2004
, “
Hemodynamic Effects of Clot Entrapment in the TrapEase Inferior Vena Cava Filter
,”
J. Vasc. Interv. Radiol.
,
15
, pp.
485
490
.10.1097/01.RVI.0000124941.58200.85
15.
Stoneham
,
G. W.
,
Burbridge
,
B. E.
, and
Millward
,
S. F.
,
1995
, “
Temporary Inferior Vena Cava Filters: In Vitro Comparison With Permanent IVC Filters
,”
J. Vasc. Interv. Radiol.
,
6
, pp.
731
736
.10.1016/S1051-0443(95)71175-7
16.
Singer
,
M. A.
, and
Wang
,
S. L.
,
2011
, “
Modeling Blood Flow in a Tilted Inferior Vena Cava Filter: Does Tilt Adversely Affect Hemodynamics?
,”
J. Vasc. Interv. Radiol.
,
22
, pp.
229
235
.10.1016/j.jvir.2010.09.032
17.
Rahbar
,
E.
,
Mori
,
D.
, and
Moore
,
J. E.
,
2011
, “
Three-Dimensional Analysis of Flow Disturbances Caused by Clots in Inferior Vena Cava Filters
,”
J. Vasc. Interv. Radiol.
,
22
, pp.
835
842
.10.1016/j.jvir.2010.12.024
18.
Sastry
,
S. P.
,
Kim
,
J.
,
Shontz
,
S. M.
,
Craven
,
B. A.
,
Lynch
,
F. C.
,
Manning
,
K. B.
, and
Panitanarak
,
T.
,
2013
, “
Patient-Specific Model Generation and Simulation for Pre-Operative Surgical Guidance for Pulmonary Embolism Treatment
.,”Image-Based Geometric Modeling and Mesh Generation, pp.
227
254
.
19.
Swaminathan
,
T. N.
,
Hu
,
H. H.
, and
Patel
,
A. A.
,
2006
, “
Numerical Analysis of the Hemodynamics and Embolus Capture of a Greenfield Vena Cava Filter
,”
ASME J. Biomech. Eng.
,
128
(
3
), pp.
360
370
.10.1115/1.2187034
20.
Singer
,
M. A.
,
Henshaw
,
W. D.
, and
Wang
,
S. L.
,
2009
, “
Computational Modeling of Blood Flow in the TrapEase Inferior Vena Cava Filter
,”
J. Vasc. Interv. Radiol.
,
20
, pp.
799
805
.10.1016/j.jvir.2009.02.015
21.
Wang
,
S. L.
, and
Singer
,
M. A.
,
2010
, “
Toward an Optimal Position for Inferior Vena Cava Filters: Computational Modeling of the Impact of Renal Vein Inflow With Celect and TrapEase Filters
,”
J. Vasc. Interv. Radiol.
,
21
, pp.
367
374
.10.1016/j.jvir.2009.11.013
22.
Ren
,
Z.
,
Wang
,
S. L.
, and
Singer
,
M. A.
,
2012
, “
Modeling Hemodynamics in an Unoccluded and Partially Occluded Inferior Vena Cava Under Rest and Exercise Conditions
,”
Med. Biol. Eng. Comput.
,
50
, pp.
277
287
.10.1007/s11517-012-0867-y
23.
Ang
,
W. C.
,
Doyle
,
T.
, and
Stringer
,
M. D.
,
2013
, “
Left-Sided and Duplicate Inferior Vena Cava: A Case Series and Review
,”
Clin. Anat.
,
26
, pp.
990
1001
.10.1002/ca.22090
24.
Chee
,
Y. L.
,
Culligan
,
D. J.
, and
Watson
,
H. G.
,
2001
, “
Inferior Vena Cava Malformation as a Risk Factor for Deep Venous Thrombosis in the Young
,”
Br. J. Haematol.
,
114
, pp.
878
880
.10.1046/j.1365-2141.2001.03025.x
25.
Cizginer.
,
S.
,
Tatli
,
S.
,
Girshman
,
J.
,
Beckman
,
J. A.
, and
Silverman
,
S. G.
,
2007
, “
Thrombosed Interrupted Inferior Vena Cava and Retroaortic Left Renal Vein Mimicking Retroperitoneal Neoplasm
,”
Abdom. Imaging
,
32
, pp.
403
406
.10.1007/s00261-006-9052-9
26.
Gayer
,
G.
,
Luboshitz
,
J.
,
Hertz
,
M.
,
Zissin
,
R.
,
Thaler
,
M.
,
Lubetsky
,
A.
,
Bass
,
A.
,
Korat
,
A.
, and
Apter
,
S.
,
2003
, “
Congenital Anomalies of the Inferior Vena Cava Revealed on CT in Patients With Deep Vein Thrombosis
,”
Am. J. Roentgenol.
,
180
(
3
), pp.
729
732
.10.2214/ajr.180.3.1800729
27.
Milani
,
C.
,
Constantinou
,
M.
,
Berz
,
D.
,
Butera
,
J. N.
, and
Colvin
,
G. A.
,
2008
, “
Left Sided Inferior Vena Cava Duplication and Venous Thromboembolism: Case Report and Review of Literature
,”
J. Clin. Hematol. Oncol.
,
1
(
1
), pp.
24
28
.10.1186/1756-8722-1-24
28.
Nanda
,
S.
,
Bhatt
,
S. P.
, and
Turki
,
M. A.
,
2008
, “
Inferior Vena Cava Anomalies—A Common Cause of DVT and PE Commonly Not Diagnosed
,”
Am. J. Med. Sci.
,
335
, pp.
409
410
.10.1097/MAJ.0b013e318155748d
29.
Qian
,
Z.-Y.
,
Yang
,
M.-F.
,
Zuo
,
K.-Q.
,
Cheng
,
J.
,
Xiao
,
H.-B.
, and
Ding
,
W.-X.
,
2013
, “
Computed Tomography Manifestations of Common Inferior Vena Cava Dysplasia and Its Clinical Significance
,”
Exp. Ther. Med.
,
5
, pp.
631
635
.
30.
Kaufman
,
J. A.
,
Waltman
,
A. C.
,
Rivitz
,
S. M.
, and
Geller
,
S. C.
,
1995
, “
Anatomical Observations on the Renal Veins and Inferior Vena Cava at Magnetic Resonance Angiography
,”
Cardiovasc. Interv. Radiol.
,
18
(
3
), pp.
153
157
.
31.
Teo
,
T. K. B.
,
Angle
,
J. F.
,
Shipp
,
J. I.
,
Bluett
,
M. K.
,
Gilliland
,
C. A.
,
Turba
,
U. C.
, and
Matsumoto
,
A. H.
,
2011
, “
Incidence and Management of Inferior Vena Cava Filter Thrombus Detected at Time of Filter Retrieval
,”
J. Vasc. Interv. Radiol.
,
22
, pp.
1514
1520
.10.1016/j.jvir.2011.08.006
32.
Ito
,
M.
,
Hsu
,
C.-T.
,
Shikuwa
,
S.
,
Kawase
,
Y.
,
Matsumoto
,
K.
,
Sekine
,
I.
, and
Fujii
,
H.
,
1988
, “
Morphometrical Study on the Sclerotic Inferior Vena Cava in Chronic Lung Disease
,”
Acta Med. Nagasaki
,
33
, pp.
157
162
.
33.
Gasser
,
T. C.
,
Ogden
,
R. W.
, and
Holzapfel
,
G. A.
,
2006
, “
Hyperelastic Modelling of Arterial Layers With Distributed Collagen Fibre Orientations
,”
J. R. Soc. Interface
,
3
, pp.
15
35
.10.1098/rsif.2005.0073
34.
Holzapfel
,
G. A.
,
Gasser
,
T. C.
, and
Ogden
,
R. W.
,
2000
, “
A New Constitutive Framework for Arterial Wall Mechanics and a Comparative Study of Material Models
,”
J. Elasticity
,
61
, pp.
1
48
.10.1023/A:1010835316564
35.
Sobin
,
P. B.
,
1977
, “
Mechanical Properties of Human Veins
,” M.S. thesis, University of California, San Diego, CA.
36.
Auricchio
,
F.
, and
Stefanelli
,
U.
,
2004
, “
Numerical Analysis of a Three-Dimensional Super-Elastic Constitutive Model
,”
Int. J. Numer. Methods Eng.
,
61
, pp.
142
155
.10.1002/nme.1062
37.
Conti
,
M.
,
2007
, “
Finite Element Analysis of Self-Expanding Braided Wirestent
,” M.S. thesis, Ghent University, Belgium.
38.
de Putter
,
S.
,
Wolters
,
B. J. B. M.
,
Rutten
,
M. C. M.
,
Breeuwer
,
M.
,
Gerritsen
,
F. A.
, and
van de Vosse
,
F. N.
,
2007
, “
Patient-Specific Initial Wall Stress in Abdominal Aortic Aneurysms With a Backward Incremental Method
,”
J. Biomech.
,
40
, pp.
1081
1090
.10.1016/j.jbiomech.2006.04.019
39.
Huang
,
X.
,
Yang
,
C.
,
Yuan
,
C.
,
Liu
,
F.
,
Canton
,
G.
,
Zheng
,
J.
,
Woodard
,
P. K.
,
Sicard
,
G. A.
, and
Tang
,
D.
,
2009
, “
Patient-Specific Artery Shrinkage and 3D Zero-Stress State in Multi-Component 3D FSI Models for Carotid Atherosclerotic Plaques Based on in Vivo MRI Data
,”
Mol. Cell. Biomech.
,
6
, pp.
121
134
.
40.
Marik
,
P. E.
,
Baram
,
M.
, and
Vahid
,
B.
,
2008
, “
Does Central Venous Pressure Predict Fluid Responsiveness?
,”
Chest
,
134
, pp.
172
178
.10.1378/chest.07-2331
41.
Sanchez
,
N. C.
,
Tenofsky
,
P. L.
,
Dort
,
J. M.
,
Shen
,
L. Y.
,
Helmer
,
S. D.
, and
Smith
,
R. S.
,
2001
, “
What is Normal Intra-Abdominal Pressure?
,”
Am. Surgeon
,
67
, pp.
243
248
.
42.
Auricchio
,
F.
,
Conti
,
M.
,
De Beule
,
M.
,
De Santis
,
G.
, and
Verhegghe
,
B.
,
2011
, “
Carotid Artery Stenting Simulation: From Patient-Specific Images to Finite Element Analysis
,”
Med. Eng. Phy.
,
33
, pp.
281
289
.10.1016/j.medengphy.2010.10.011
43.
Ma
,
D.
,
Dargush
,
G. F.
,
Natarajan
,
S. K.
,
Levy
,
E. L.
,
Siddiqui
,
A. H.
, and
Meng
,
H.
,
2012
, “
Computer Modeling of Deployment and Mechanical Expansion of Neurovascular Flow Diverter in Patient-Specific Intracranial Aneurysms
,”
J. Biomech.
,
45
, pp.
2256
2263
.10.1016/j.jbiomech.2012.06.013
44.
Rosenson
,
R. S.
,
McCormick
,
A.
, and
Uretz
,
E. F.
,
1996
, “
Distribution of Blood Viscosity Values and Biochemical Correlates in Healthy Adults
,”
Clin. Chem.
,
42
, pp.
1189
1195
.
45.
Cheng
,
C. P.
,
Herfkens
,
R. J.
, and
Taylor
,
C. A.
,
2003
, “
Inferior Vena Caval Hemodynamics Quantified in Vivo at Rest and During Cycling Exercise Using Magnetic Resonance Imaging
,”
Am. J. Physiol. Heart Circ. Physiol.
,
284
, pp.
H1161
H1167
.
46.
OpenCFD Ltd.
,
2012
, “
User Guide, openfoam version 2.1.x
,”.
47.
Goel
,
M. S.
, and
Diamond
,
S. L.
,
2002
, “
Adhesion of Normal Erythrocytes at Depressed Venous Shear Rates to Activated Neutrophils, Activated Platelets, and Fibrin Polymerized From Plasma
,”
Blood
,
100
, pp.
3797
3803
.10.1182/blood-2002-03-0712
48.
Turitto
,
V. T.
, and
Hall
,
C. L.
,
1998
, “
Mechanical Factors Affecting Hemostasis
,”
Thromb. Res.
,
92
, pp.
25
31
.10.1016/S0049-3848(98)00157-1
49.
Roache
,
P. J.
,
1998
,
Verification and Validation in Computational Science and Engineering
,
Hermosa Publishers
,
Albuquerque, NM
.
50.
Bovill
,
E. G.
, and
van der Vliet
,
A.
,
2011
, “
Venous Valvular Stasis-Associated Hypoxia and Thrombosis: What Is the Link?
,”
Annu. Rev. Physiol.
,
73
, pp.
527
545
.10.1146/annurev-physiol-012110-142305
51.
Lowe
,
G. D. O.
,
2005
, “
Virchow's Triad Revisited: Abnormal Flow
,”
Pathophysiol. Haemost. Thromb.
,
33
, pp.
455
457
.10.1159/000083845
52.
Grabowski
,
E. F.
,
1995
, “
Thrombolysis, Flow, and Vessel Wall Interactions
,”
J. Vasc. Interv. Radiol.
,
6
, pp.
25S
29S
.10.1016/S1051-0443(95)71245-3
53.
Komorowicz
,
E.
,
Kolev
,
K.
,
Lerant
,
I.
, and
Machovich
,
R.
,
1998
, “
Flow Rate Modulated Dissolution of Fibrin With Clot-Embedded and Circulating Proteases
,”
Circ. Res.
,
82
, pp.
1102
1108
.10.1161/01.RES.82.10.1102
54.
Sakharov
,
D. V.
, and
Rijken
,
D. C.
,
2000
, “
The Effect of Flow on Lysis of Plasma Clots in a Plasma Environment
,”
Thromb. Haemost.
,
83
, pp.
469
474
.
55.
Biswas
,
R.
,
Patel
,
P.
,
Park
,
D. W.
,
Cichonski
,
T. J.
,
Richards
,
M. S.
,
Rubin
,
J. M.
,
Hamilton
,
J.
, and
Weitzel
,
W. F.
,
2010
, “
Venous Elastography: Validation of a Novel High-Resolution Ultrasound Method for Measuring Vein Compliance Using Finite Element Analysis
,”
23
(
1
), pp.
105
109
.
You do not currently have access to this content.