In the early embryo, the primitive heart tube (HT) undergoes the morphogenetic process of c-looping as it bends and twists into a c-shaped tube. Despite intensive study for nearly a century, the physical forces that drive looping remain poorly understood. This is especially true for the bending component, which is the focus of this paper. For decades, experimental measurements of mitotic rates had seemingly eliminated differential growth as the cause of HT bending, as it has commonly been thought that the heart grows almost exclusively via hyperplasia before birth and hypertrophy after birth. Recently published data, however, suggests that hypertrophic growth may play a role in looping. To test this idea, we developed finite-element models that include regionally measured changes in myocardial volume over the HT. First, models based on idealized cylindrical geometry were used to simulate the bending process in isolated hearts, which bend without the complicating effects of external loads. With the number of free parameters in the model reduced to the extent possible, stress and strain distributions were compared to those measured in embryonic chick hearts that were isolated and cultured for 24 h. The results show that differential growth alone yields results that agree reasonably well with the trends in our data, but adding active changes in myocardial cell shape provides closer quantitative agreement with stress measurements. Next, the estimated parameters were extrapolated to a model based on realistic 3D geometry reconstructed from images of an actual chick heart. This model yields similar results and captures quite well the basic morphology of the looped heart. Overall, our study suggests that differential hypertrophic growth in the myocardium (MY) is the primary cause of the bending component of c-looping, with other mechanisms possibly playing lesser roles.

References

1.
Patten
,
B. M.
,
1922
, “
The Formation of the Cardiac Loop in the Chick
,”
Am. J. Anat.
,
30
, pp.
373
397
.10.1002/aja.1000300304
2.
Stalsberg
,
H.
,
1970
, “
Development and Ultrastructure of the Embryonic Heart. II. Mechanism of Dextral Looping of the Embryonic Heart
,”
Am. J. Cardiol.
,
25
(
3
), pp.
265
271
.10.1016/S0002-9149(70)80002-9
3.
Männer
,
J.
,
2000
, “
Cardiac Looping in the Chick Embryo: A Morphological Review With Special Reference to Terminological and Biomechanical Aspects of the Looping Process
,”
Anat. Rec.
,
259
, pp.
248
262
.10.1002/1097-0185(20000701)259:3<248::AID-AR30>3.0.CO;2-K
4.
Taber
,
L. A.
,
2006
, “
Biophysical Mechanisms of Cardiac Looping
,”
Int. J. Dev. Biol.
,
50
(
2–3
), pp.
323
332
.10.1387/ijdb.052045lt
5.
Butler
,
J. K.
,
1952
, “
An Experimental Analysis of Cardiac Loop Formation in the Chick
,” M.S. thesis, University of Texas, Austin, TX.
6.
Manning
,
A.
, and
McLachlan
,
J. C.
,
1990
, “
Looping of Chick Embryo Hearts in vitro
,”
J. Anat.
,
168
, pp.
257
263
.
7.
Voronov
,
D. A.
,
Alford
,
P. W.
,
Xu
,
G.
, and
Taber
,
L. A.
,
2004
, “
The Role of Mechanical Forces in Dextral Rotation During Cardiac Looping in the Chick Embryo
,”
Dev. Biol.
,
272
(
2
), pp.
339
350
.10.1016/j.ydbio.2004.04.033
8.
Latacha
,
K. S.
,
Rémond
,
M. C.
,
Ramasubramanian
,
A.
,
Chen
,
A. Y.
,
Elson
,
E. L.
, and
Taber
,
L. A.
,
2005
, “
Role of Actin Polymerization in Bending of the Early Heart Tube
,”
Dev. Dyn.
,
233
(
4
), pp.
1272
1286
.10.1002/dvdy.20488
9.
Rémond
,
M. C.
,
Fee
,
J. A.
,
Elson
,
E. L.
, and
Taber
,
L. A.
,
2006
, “
Myosin-Based Contraction is Not Necessary for Cardiac C-Looping in the Chick Embryo
,”
Anat. Embryol. (Berl).
,
211
(
5
), pp.
443
454
.10.1007/s00429-006-0094-0
10.
Davis
,
C. L.
,
1927
, “
Development of the Human Heart from its First Appearance to the Stage Found in Embryos of Twenty Paired Somites
,”
Contrib. Embryol.
,
19
, pp.
245
284
.
11.
Sissman
,
N. J.
,
1966
, “
Cell Multiplication Rates During Development of the Primitive Cardiac Tube in the Chick Embryo
,”
Nature
,
210
, pp.
504
507
.10.1038/210504a0
12.
Stalsberg
,
H.
,
1969
, “
Regional Mesoderm Mitotic Activity in the Precardiac Mesoderm and Differentiating Heart Tube in the Chick Embryo
,”
Dev. Biol.
,
20
, pp.
18
45
.10.1016/0012-1606(69)90003-7
13.
Grossman
,
W.
,
1980
, “
Cardiac Hypertrophy: Useful Adaptation or Pathologic Process?
,”
Am. J. Med.
,
69
(
4
), pp.
576
584
.10.1016/0002-9343(80)90471-4
14.
Ieda
,
M.
,
Tsuchihashi
,
T.
,
Ivey
,
K. N.
,
Ross
,
R. S.
,
Hong
,
T.-T.
,
Shaw
,
R. M.
, and
Srivastava
,
D.
,
2009
, “
Cardiac Fibroblasts Regulate Myocardial Proliferation Through β1 Integrin Signaling
,”
Dev. Cell
,
16
(
2
), pp.
233
244
.10.1016/j.devcel.2008.12.007
15.
Manasek
,
F. J.
,
Isobe
,
Y.
,
Shimada
,
Y.
, and
Hopkins
,
W.
,
1984
, “
The Embryonic Myocardial Cytoskeleton, Interstitial Pressure, and the Control of Morphogenesis
,”
Congenital Heart Diseases Causes Process
,
J.
Nora
and
A.
Takao
, eds.,
Futura Publishing
, Mount Kisco, NY, pp.
359
376
.
16.
Baldwin
,
H. S.
, and
Solursh
,
M.
,
1989
, “
Degradation of Hyaluronic Acid Does Not Prevent Looping of the Mammalian Heart in Situ
,”
Dev. Biol.
,
136
(
2
), pp.
555
559
.10.1016/0012-1606(89)90281-9
17.
Linask
,
K. K.
,
Han
,
M.-D.
,
Linask
,
K. L.
,
Schlange
,
T.
, and
Brand
,
T.
,
2003
, “
Effects of Antisense Misexpression of CFC on Downstream Flectin Protein Expression During Heart Looping
,”
Dev. Dyn.
,
228
(
2
), pp.
217
230
.10.1002/dvdy.10383
18.
Itasaki
,
N.
,
Nakamura
,
H.
,
Sumida
,
H.
, and
Yasuda
,
M.
,
1991
, “
Actin Bundles on the Right Side in the Caudal Part of the Heart Tube Play a Role in Dextro-Looping in the Embryonic Chick Heart
,”
Anat. Embryol. (Berlin)
,
183
(
1
), pp.
29
39
.10.1007/BF00185832
19.
García-Castro
,
M. I.
,
Vielmetter
,
E.
, and
Bronner-Fraser
,
M.
,
2000
, “
N-Cadherin, a Cell Adhesion Molecule Involved in Establishment of Embryonic Left-Right Asymmetry
,”
Science
,
288
(
5468
), pp.
1047
1051
.10.1126/science.288.5468.1047
20.
Manasek
,
F. J.
,
Burnside
,
M. B.
, and
Waterman
,
R. E.
,
1972
, “
Myocardial Cell Shape Changes as a Mechanism of Embryonic Heart Looping
,”
Dev. Biol.
,
29
, pp.
349
371
.10.1016/0012-1606(72)90077-2
21.
Soufan
,
A. T.
,
van den Berg
,
G.
,
Ruijter
,
J. M.
,
de Boer
,
P. A. J.
,
van den Hoff
,
M. J. B.
, and
Moorman
,
A. F. M.
,
2006
, “
Regionalized Sequence of Myocardial Cell Growth and Proliferation Characterizes Early Chamber Formation
,”
Circ. Res.
,
99
(
5
), pp.
545
552
.10.1161/01.RES.0000239407.45137.97
22.
Hamburger
,
V.
, and
Hamilton
,
H.
,
1951
, “
A Series of Normal Stages in the Development of the Chick Embryo
,”
J. Morphog.
,
88
, pp.
49
92
.10.1002/jmor.1050880104
23.
Nakamura
,
A.
, and
Manasek
,
F. J.
,
1978
, “
Experimental Studies of Shape and Structure of Isolated Cardiac Jelly
,”
J. Embryol. Exp. Morphol.
,
43
, pp.
167
183
.
24.
Zamir
,
E. A.
, and
Taber
,
L. A.
,
2004
, “
Material Properties and Residual Stress in the Stage 12 Chick Heart During Cardiac Looping
,”
ASME J. Biomech. Eng.
,
126
(
6
), pp.
823
830
.10.1115/1.1824129
25.
Zamir
,
E. A.
,
Srinivasan
, V
.
,
Perucchio
,
R.
, and
Taber
,
L. A.
,
2003
, “
Mechanical Asymmetry in the Embryonic Chick Heart During Looping
,”
Ann. Biomed. Eng.
,
31
(
11
), pp.
1327
1336
.10.1114/1.1623487
26.
Taber
,
L. A.
,
Lin
, I
. E.
, and
Clark
,
E. B.
,
1995
, “
Mechanics of Cardiac Looping
,”
Dev. Dyn.
,
203
(
1
), pp.
42
50
.10.1002/aja.1002030105
27.
Martin
,
A. C.
,
2010
, “
Pulsation and Stabilization: Contractile Forces that Underlie Morphogenesis
,”
Dev. Biol.
,
341
(
1
), pp.
114
125
.10.1016/j.ydbio.2009.10.031
28.
Wozniak
,
M. A.
, and
Chen
,
C. S.
,
2009
, “
Mechanotransduction in Development: A Growing Role for Contractility
,”
Nat. Rev. Mol. Cell Biol.
,
10
(
1
), pp.
34
43
.10.1038/nrm2592
29.
Varner
,
V. D.
, and
Taber
,
L. A.
,
2012
, “
Not Just Inductive: A Crucial Mechanical Role for the Endoderm During Heart Tube Assembly
,”
Development
,
139
(
9
), pp.
1680
1690
.10.1242/dev.073486
30.
Nerurkar
,
N. L.
,
Ramasubramanian
,
A.
, and
Taber
,
L. A.
,
2006
, “
Morphogenetic Adaptation of the Looping Embryonic Heart to Altered Mechanical Loads
,”
Dev. Dyn.
,
235
(
7
), pp.
1822
1829
.10.1002/dvdy.20813
31.
Rosenblatt
,
J.
,
Cramer
,
L. P.
,
Baum
,
B.
, and
McGee
,
K. M.
,
2004
, “
Myosin II-Dependent Cortical Movement is Required for Centrosome Separation and Positioning During Mitotic Spindle Assembly
,”
Cell
,
117
(
3
), pp.
361
372
.10.1016/S0092-8674(04)00341-1
32.
Spector
,
I.
,
Shochet
,
N. R.
,
Blasberger
,
D.
, and
Kashman
,
Y.
,
1989
, “
Latrunculins—Novel Marine Macrolides that Disrupt Microfilament Organization and Affect Cell Growth: I. Comparison With Cytochalasin D
,”
Cell Motil. Cytoskeleton
,
13
(
3
), pp.
127
144
.10.1002/cm.970130302
33.
Ornelles
,
D. A.
,
Fey
,
E. G.
, and
Penman
,
S.
,
1986
, “
Cytochalasin Releases mRNA From the Cytoskeletal Framework and Inhibits Protein Synthesis
,”
Mol. Cell. Biol.
,
6
(
5
), pp.
1650
1662
.10.1128/MCB.6.5.1650
34.
Ingber
,
D. E.
,
Sun
,
Z.
,
Betensky
,
H.
, and
Wang
,
N.
,
1995
, “
Cell Shape, Cytoskeletal Mechanics, and Cell Cycle Control in Angiogenesis
,”
J. Biomech.
,
28
(
12
), pp.
1471
1484
.10.1016/0021-9290(95)00095-X
35.
Ramasubramanian
,
A.
,
Nerurkar
,
N. L.
,
Achtien
,
K. H.
,
Filas
,
B. A.
,
Voronov
,
D. A.
, and
Taber
,
L. A.
,
2008
, “
On Modeling Morphogenesis of the Looping Heart Following Mechanical Perturbations
,”
ASME J. Biomech. Eng.
,
130
(
6
), p.
061018
.10.1115/1.2978990
36.
Voronov
,
D. A.
, and
Taber
,
L. A.
,
2002
, “
Cardiac Looping in Experimental Conditions: Effects of Extraembryonic Forces
,”
Dev. Dyn.
,
224
, pp.
413
421
.10.1002/dvdy.10121
37.
Mesud Yelbuz
,
T.
,
Choma
,
M. A.
,
Thrane
,
L.
,
Kirby
,
M. L.
, and
Izatt
,
J. A.
,
2002
, “
Optical Coherence Tomography: A New High-Resolution Imaging Technology to Study Cardiac Development in Chick Embryos
,”
Circulation
,
106
(
22
), pp.
2771
2774
.10.1161/01.CIR.0000042672.51054.7B
38.
Wyczalkowski
,
M. A.
,
Chen
,
Z.
,
Filas
,
B. A.
,
Varner
,
V. D.
, and
Taber
,
L. A.
,
2012
, “
Computational Models for Mechanics of Morphogenesis
,”
Birth Defects Res. Part C
,
96
(
2
), pp.
132
152
.10.1002/bdrc.21013
39.
Ramasubramanian
,
A.
,
Latacha
,
K. S.
,
Benjamin
,
J. M.
,
Voronov
,
D. A.
,
Ravi
,
A.
, and
Taber
,
L. A.
,
2006
, “
Computational Model for Early Cardiac Looping
,”
Ann. Biomed. Eng.
,
34
(
8
), pp.
1355
1369
.10.1007/s10439-006-9152-2
40.
Rodriguez
,
E. K.
,
Hoger
,
A.
, and
Mcculloch
,
A. D.
,
1994
, “
Stress-Dependent Finite Growth in Soft Elastic Tissues
,”
J. Biomech.
,
21
(
4
), pp.
455
467
.10.1016/0021-9290(94)90021-3
41.
Dassault Systems Simulia Corporation
,
2009
,
Abaqus User Subroutine Reference Manual
.
42.
Young
,
J. M.
,
Yao
,
J.
,
Ramasubramanian
,
A.
,
Taber
,
L. A.
, and
Perucchio
,
R.
,
2010
, “
Automatic Generation of User Material Subroutines for Biomechanical Growth Analysis
,”
ASME J. Biomech. Eng.
,
132
(
10
), p.
104505
.10.1115/1.4002375
43.
Filas
,
B. A.
,
Bayly
,
P. V.
, and
Taber
,
L. A.
,
2011
, “
Mechanical Stress as a Regulator of Cytoskeletal Contractility and Nuclear Shape in Embryonic Epithelia
,”
Ann. Biomed. Eng.
,
39
(
1
), pp.
443
454
.10.1007/s10439-010-0171-7
44.
Abu-Issa
,
R.
, and
Kirby
,
M. L.
,
2008
, “
Patterning of the Heart Field in the Chick
,”
Dev. Biol.
,
319
(
2
), pp.
223
233
.10.1016/j.ydbio.2008.04.014
45.
Clark
,
E. B.
,
Hu
,
N.
,
Frommelt
,
P.
,
Vandekieft
,
G. K.
,
Dummett
,
J. L.
, and
Tomanek
,
R. J.
,
1989
, “
Effect of Increased Pressure on Ventricular Growth in Stage 21 Chick Embryos
,”
Am. J. Physiol. Heart Circ. Physiol.
,
257
(
1
), pp.
H55
H61
.
46.
Földes
,
G.
,
Mioulane
,
M.
,
Wright
,
J. S.
,
Liu
,
A. Q.
,
Novak
,
P.
,
Merkely
,
B.
,
Gorelik
,
J.
,
Schneider
,
M. D.
,
Ali
,
N. N.
, and
Harding
,
S. E.
,
2011
, “
Modulation of Human Embryonic Stem Cell-Derived Cardiomyocyte Growth: A Testbed for Studying Human Cardiac Hypertrophy?
,”
J. Mol. Cell. Cardiol.
,
50
(
2
), pp.
367
376
.10.1016/j.yjmcc.2010.10.029
47.
Li
,
F.
,
Wang
,
X.
,
Bunger
,
P. C.
, and
Gerdes
,
A. M.
,
1997
, “
Formation of Binucleated Cardiac Myocytes in Rat Heart: I. Role of Actin-Myosin Contractile Ring
,”
J. Mol. Cell. Cardiol.
,
29
(
6
), pp.
1541
1551
.10.1006/jmcc.1997.0381
48.
Taber
,
L. A.
, and
Perucchio
,
R.
,
2000
, “
Modeling Heart Development
,”
J. Elast.
,
61
(
1–3
), pp.
165
197
.10.1023/A:1011082712497
49.
Männer
,
J.
,
Thrane
,
L.
,
Norozi
,
K.
, and
Yelbuz
,
T. M.
,
2008
, “
High-Resolution in vivo Imaging of the Cross-Sectional Deformations of Contracting Embryonic Heart Loops Using Optical Coherence Tomography
,”
Dev. Dyn.
,
237
(
4
), pp.
953
961
.10.1002/dvdy.21483
50.
Ramsdell
,
A. F.
,
2005
, “
Left-Right Asymmetry and Congenital Cardiac Defects: Getting to the Heart of the Matter in Vertebrate Left-Right Axis Determination
,”
Dev. Biol.
,
288
(
1
), pp.
1
20
.10.1016/j.ydbio.2005.07.038
51.
Männer
,
J.
,
2009
, “
The Anatomy of Cardiac Looping: A Step Towards the Understanding of the Morphogenesis of Several Forms of Congenital Cardiac Malformations
,”
Clin. Anat.
,
22
(
1
), pp.
21
35
.10.1002/ca.20652
52.
Mollova
,
M.
,
Bersell
,
K.
,
Walsh
,
S.
,
Savla
,
J.
,
Das
,
L. T.
,
Park
,
S.-Y.
,
Silberstein
,
L. E.
,
Dos Remedios
,
C. G.
,
Graham
,
D.
,
Colan
,
S.
, and
Kühn
,
B.
,
2013
, “
Cardiomyocyte Proliferation Contributes to Heart Growth in Young Humans
,”
Proc. Natl. Acad. Sci. U. S. A.
,
110
(
4
), pp.
1446
1451
.10.1073/pnas.1214608110
53.
Flynn
,
M. E.
,
Pikalow
,
A. S.
,
Kimmelman
,
R. S.
, and
Searls
,
R. L.
,
1991
, “
The Mechanism of Cervical Flexure Formation in the Chick
,”
Anat. Embryol. (Berlin)
,
184
(
4
), pp.
411
420
.10.1007/BF00957902
54.
von Dassow
,
M.
, and
Davidson
,
L. A.
,
2007
, “
Variation and Robustness of the Mechanics of Gastrulation: The Role of Tissue Mechanical Properties During Morphogenesis
,”
Birth Defects Res., Part C
,
81
(
4
), pp.
253
269
.10.1002/bdrc.20108
You do not currently have access to this content.