A majority of the middle-aged population exhibit cervical spondylosis that may require decompression and fusion of the affected level. Minimally invasive cervical fusion is an attractive option for decreasing operative time, morbidity, and mortality rates. A novel interfacet joint spacer (DTRAX facet screw system, Providence Medical) promises minimally invasive deployment resulting in decompression of the neuroforamen and interfacet fusion. The present study investigates the effectiveness of the device in minimizing intervertebral motion to promote fusion, decompression of the nerve root during bending activity, and performance of the implant to adhere to anatomy during repeated bending loads. We observed flexion, extension, lateral bending, and axial rotation resonant overshoot mode (ROM) in cadaver models of c-spine treated with the interfacet joint spacer (FJ spacer) as stand-alone and supplementing anterior plating. The FJ spacer was deployed bilaterally at single levels. Specimens were placed at the limit of ROM in flexion, extension, axial bending, and lateral bending. 3D images of the foramen were taken and postprocessed to quantify changes in foraminal area. Stand-alone spacer specimens were subjected to 30,000 cycles at 2 Hz of nonsimultaneous flexion-extension and lateral bending under compressive load and X-ray imaged at regular cycle intervals for quantitative measurements of device loosening. The stand-alone FJ spacer increased specimen stiffness in all directions except extension. 86% of all deployments resulted in some level of foraminal distraction. The rate of effective distraction was maintained in flexed, extended, and axially rotated postures. Two specimens demonstrated no detectable implant loosening (<0.25 mm). Three showed unilateral subclinical loosening (0.4 mm maximum), and one had subclinical loosening bilaterally (0.5 mm maximum). Results of our study are comparable to previous investigations into the stiffness of other stand-alone minimally invasive technologies. The FJ spacer system effectively increased stiffness of the affected level comparable to predicate systems. Results of this study indicate the FJ spacer increases foraminal area in the cervical spine, and decompression is maintained during bending activities. Clinical studies will be necessary to determine whether the magnitude of decompression observed in this cadaveric study will effectively treat cervical radiculopathy; however, results of this study, taken in context of successful decompression treatments in the lumbar spine, are promising for the continued development of this product. Results of this biomechanical study are encouraging for the continued investigation of this device in animal and clinical trials, as they suggest the device is well fixated and mechanically competent.

References

References
1.
Hughes
,
J. T.
, and
Brownell
,
B.
,
1965
, “
Necropsy Observations on the Spinal Cord in Cervical Spondylosis
,”
Riv. Patol. Nerv. Ment.
,
86
(2), pp.
196
204
.
2.
Irvine
,
D. H.
,
Foster
,
J. B.
,
Newell
,
D. J.
, and
Klukvin
,
B. N.
,
1965
, “
Prevalence of Cervical Spondylosis in a General Practice
,”
Lancet
,
22
(1), pp.
1082
1092
.
3.
Pallis
,
C.
,
Jones
,
A. M.
, and
Spillane
,
J. D.
,
1954
, “
Cervical Spondylosis; Incidence and Implications
,”
Brain
,
77
(2), pp,
274
286
.10.1093/brain/77.2.274
4.
Bednarik
,
J.
,
Kadanka
,
Z.
,
Dusek
,
L.
,
Novotny
,
O.
,
Surelova
,
D.
,
Urbanek
,
I.
, and
Prokes
,
B.
,
2004
, “
Presymptomatic Spondylotic Cervical Cord Compression
,”
Spine
,
29
(20), pp.
2260
2269
.10.1097/01.brs.0000142434.02579.84
5.
Teresi
,
L. M.
,
Lufkin
,
R. B.
,
Reicher
,
M. A.
,
Moffit
,
B. J.
,
Vinuela
,
F. V.
,
Wilson
,
G. M.
,
Bentson
,
J. R.
, and
Hanafee
,
W. N.
,
1987
, “
Asymptomatic Degenerative Disk Disease and Spondylosis of the Cervical Spine: MR Imaging
,”
Radiology
,
164
(
1
), pp.
83
88
.
6.
Tanaka
,
N.
,
Fujimoto
,
Y.
,
An
,
H. S.
,
Ikuta
,
Y.
, and
Yasuda
,
M.
,
2000
, “
The Anatomic Relation Among the Nerve Roots, Intervertebral Foramina, and Intervertebral Discs of the Cervical Spine
,”
Spine
,
25
(
3
), pp.
286
291
.10.1097/00007632-200002010-00005
7.
Adams
,
P.
, and
Muri
,
H.
,
1976
, “
Qualitative Changes With Age of Proteoglycans of Human Lumbar Discs
,”
Ann. Rheum. Dis.
,
35
(4), pp.
289
296
.10.1136/ard.35.4.289
8.
Radhakrishnan
,
K.
,
Litchy
,
W. J.
,
O'Fallon
,
W. M.
, and
Kurland
,
L. T.
,
1994
, “
Epidemiology of Cervical Radiculopathy. A Population-Based Study From Rochester, Minnesota, 1976 Through 1990
,”
Brain
, (
Pt. 2
), pp.
325
335
.10.1093/brain/117.2.325
9.
Chagas
,
H.
,
Dominques
,
F.
,
Aversa
,
A.
,
Vidal Fonseca
,
A. L.
, and
de Souza
,
J. M.
,
2005
, “
Cervical Spondylotic Myelopathy: 10 Years of Prospective Outcome Analysis of Anterior Decompression and Fusion
,”
Surg Neurol.
, (
Suppl.
), pp.
30
35
, discussion S1, pp. 35–36.10.1016/j.surneu.2005.02.016
10.
Klekamp
,
J. W.
,
Uqbo
,
J. L.
,
Heller
,
J. G.
, and
Hutton
,
W. C.
,
2000
, “
Cervical Transfacet Versus Lateral Mass Screws: A Biomechanical Comparison
,”
J. Spinal Disord.
, pp.
515
518
.10.1097/00002517-200012000-00009
11.
Miyanji
,
F.
,
Mahar
,
A.
,
Oka
,
R.
, and
Newton
,
P.
,
2008
, “
Biomechanical Differences Between Transfacet and Lateral Mass Screw-Rod Constructs for Multilevel Posterior Cervical Spine Stabilization
,”
Spine
,
33
(23), pp.
E865
E869
.10.1097/BRS.0b013e318184ace8
12.
DalCanto
,
R. A.
,
Lieberman
,
I.
,
Inceoglu
,
S.
,
Kayanja
,
M.
, and
Ferrara
,
L.
,
2005
, “
Biomechanical Comparison of Transarticular Facet Screws to Lateral Mass Plates in Two-Level Instrumentations of the Cervical Spine
,”
Spine
,
30
(8), pp.
897
892
.10.1097/01.brs.0000158937.64577.25
13.
Ahmad
,
F. U.
,
Madhavan
,
K.
,
Trombly
,
R.
, and
Levi
,
A. D.
,
2012
, “
Anterior Thigh Compartment Syndrome and Local Myonecrosis After Posterior Spine Surgery on a Jackson Table
,”
World Neurosurg
,
78
(
5
),
553-e5–553-e8
.10.1016/j.wneu.2012.03.027
14.
Ahn
,
Y.
,
Lee
,
S. H.
,
Lee
,
S. C.
,
Shin
,
S. W.
, and
Chung
,
S. E.
,
2004
, “
Factors Predicting Excellent Outcome of Percutaneous Cervical Discectomy: Analysis of 111 Consecutive Cases
,”
Neuroradiology
,
46
(5), pp.
378
384
.10.1007/s00234-004-1197-z
15.
Barnes
,
A. H.
,
Eguizabal
,
J. A.
,
Acosta
,
F. L.
Jr.
,
Lotz
,
J. C.
,
Buckley
,
J. M.
, and
Ames
,
C. P.
,
2009
, “
Biomechanical Pullout Strength and Stability of the Cervical Artificial Pedicle Screw
,”
Spine
,
34
(1), pp.
E16
E20
.10.1097/BRS.0b013e3181891772
16.
Acosta
,
F. L.
Jr.
,
Buckley
,
J. M.
,
Xu
,
Z.
,
Lotz
,
J. C.
, and
Ames
,
C. P.
,
2008
, “
Biomechanical Comparison of Three Fixation Techniques for Unstable Thoracolumbar Burst Fractures. Laboratory Investigation
,”
J. Neurosurg. Spine
,
8
(4), pp.
341
346
.10.3171/SPI/2008/8/4/341
17.
Richards
,
J. C.
,
Majumdar
,
S.
,
Lindsey
,
D. P.
,
Beaupre
,
G. S.
, and
Yerby
,
S. A.
,
2005
, “
The Treatment Mechanism of an Interspinous Process Implant for Lumbar Neurogenic Intermittent
,”
Spine
,
30
(
7
), pp,
744
749
.10.1097/01.brs.0000157483.28505.e3
18.
Panjabi
,
M. M.
,
2007
, “
Hybrid Multidirectional Test Method to Evaluate Spinal Adjacent-Level Effects
,”
Clin. Biomech.
,
22
(
3
), pp.
257
265
.10.1016/j.clinbiomech.2006.08.006
19.
Patwardhan
,
A. G.
,
Havey
,
R. M.
,
Ghanayem
,
A. J.
,
Diener
,
H.
,
Meade
,
K. P.
,
Dunlap
,
B.
, and
Hodges
,
S. D.
,
2000
, “
Load-Carrying Capacity of the Human Cervical Spine in Compression Is Increased Under a Follower Load
,”
Spine
,
25
(
12
), pp.
1548
1554
.10.1097/00007632-200006150-00015
20.
Overgaard
,
S.
,
Lind
,
M.
,
Glerup
,
H.
,
Bunger
,
C.
, and
Soballe
,
K.
,
1998
, “
Porous-Coated Versus Grit-Blasted Surface Texture of Hydroxyapatite-Coated Implants During Controlled Micromotion
,”
J. Arthroplasty
,
13
(
4
), pp.
449–458
.10.1016/S0883-5403(98)90011-0
21.
Goertzen
,
D. J.
,
Lane
,
C.
, and
Oxland
,
T. R.
,
2004
, “
Neutral Zone and Range of Motion in the Spine Are Greater With Stepwise Loading Than With a Continuous Loading Protocol. An in vitro Porcine Investigation
,”
J. Biomech.
,
37
(
2
), pp.
257
261
.10.1016/S0021-9290(03)00307-5
22.
Crawford
,
N. R.
, and
Dickman
,
C. A.
,
1997
, “
Construction of Local Vertebral Coordinate Systems Using a Digitizing Probe. Technical Note
,”
Spine
,
1
(
1
), pp.
559
563
.10.1097/00007632-199703010-00020
23.
Espinoza-Larios
,
A.
,
Ames
,
C. P.
,
Chamberlain
,
R. H.
,
Sonntag
,
V. K.
,
Dickman
,
C. A.
, and
Crawford
,
N. R.
,
2007
, “
Biomechanical Comparison of Two-Level Cervical Locking Posterior Screw/Rod and Hook/Rod Techniques
,”
Spine J.
,
7
(
2
), pp.
194
204
.10.1016/j.spinee.2006.04.015
24.
Siddiqui
,
M.
,
Karadimas
,
E.
,
Nicol
,
M.
,
Smith
,
F. W.
, and
Wardlaw
,
D.
,
2006
, “
Influence of X Stop on Neural Foramina and Spinal Canal Area in Spinal Stenosis
,”
Spine
,
31
(
25
), pp.
2958
2962
.10.1097/01.brs.0000247797.92847.7d
25.
Sterling
,
A. C.
,
Cobian
,
D. G.
,
Anderson
,
P. A.
, and
Heiderscheit
,
B. C.
,
2008
, “
Annual Frequency and Magnitude of Neck Motion in Healthy Individuals
,”
Spine
,
33
(
17
), pp.
1882
1888
.10.1097/BRS.0b013e31817e7019
26.
Chiang
,
C. K.
,
Wang
,
Y. H.
,
Yang
,
C. Y.
,
Yang
,
B. D.
, and
Wang
,
J. L.
,
2009
, “
Prophylactic Vertebroplasty May Reduce the Risk of Adjacent Intact Vertebra From Fatigue Injury: An Ex Vivo Biomechanical Study
,”
Spine
,
34
(
4
), pp.
356
364
.10.1097/BRS.0b013e31819481b1
27.
Wang
,
J. L.
,
Wu
,
T. K.
,
Lin
,
T. C.
,
Cheng
,
C. H.
, and
Huang
,
S. C.
,
2008
, “
Rest Cannot Always Recover the Dynamic Properties of Fatigue-Loaded Intervertebral Disc
,”
Spine
,
33
(
17
), pp.
1863
1869
.10.1097/BRS.0b013e31817d6dd3
28.
Kuroki
,
H.
,
Rengachary
,
S. S.
,
Goel
,
V. K.
,
Holekamp
,
S. A.
,
Pitkanen
,
V.
, and
Ebraheim
,
N. A.
,
2005
, “
Biomechanical Comparison of Two Stabilization Techniques of the Atlantoaxial Joints: Transarticular Screw Fixation Versus Screw and Rod Fixation
,”
Neurosurgery
,
56
(
1 Suppl.
), pp.
151
159
, discussion pp. 151–159.10.1227/01.NEU.0000144838.01478.35
29.
Crawford
,
N. R.
,
Hurlbert
,
R. J.
,
Choi
,
W. G.
, and
Dickman
,
C. A.
,
1999
, “
Differential Biomechanical Effects of Injury and Wiring at C1–C2
,”
Spine
,
24
(
18
), pp.
1894
1902
.10.1097/00007632-199909150-00006
30.
Zhang
,
H.
,
Johnston
,
C. E.
2nd
,
Pierce
,
W. A.
,
Ashman
,
R. B.
,
Bronson
,
D. G.
, and
Haideri
,
N. F.
,
2006
, “
New Rod-Plate Anterior Instrumentation for Thoracolumbar/Lumbar Scoliosis: Biomechanical Evaluation Compared With Dual-Rod and Single-Rod With Structural Interbody Support
,”
Spine
,
31
(
25
), pp.
E934
E940
.10.1097/01.brs.0000247956.00599.a3
31.
Hitchon
,
P. W.
,
Goel
,
V. K.
,
Rogge
,
T. N.
,
Torner
,
J. C.
,
Dooris
,
A. P.
,
Drake
,
J. S.
,
Yang
,
S. J.
, and
Totoribe
,
K.
,
2000
, “
In Vitro Biomechanical Analysis of Three Anterior Thoracolumbar Implants
,”
J. Neurosurg.
,
93
(
2 Suppl.
), pp.
252
258
.
32.
Hitchon
,
P. W.
,
Goel
,
V. K.
,
Rogge
,
T.
,
Grosland
,
N. M.
, and
Torner
,
J.
,
1999
, “
Biomechanical Studies on Two Anterior Thoracolumbar Implants in Cadaveric Spines
,”
Spine
,
24
(
3
), pp.
213
218
.10.1097/00007632-199902010-00004
You do not currently have access to this content.