In the present study, we performed large eddy simulation (LES) of axisymmetric, and 75% stenosed, eccentric arterial models with steady inflow conditions at a Reynolds number of 1000. The results obtained are compared with the direct numerical simulation (DNS) data (Varghese et al., 2007, “Direct Numerical Simulation of Stenotic Flows. Part 1. Steady Flow,” J. Fluid Mech., 582, pp. 253–280). An inhouse code (WenoHemo) employing high-order numerical methods for spatial and temporal terms, along with a 2nd order accurate ghost point immersed boundary method (IBM) (Mark, and Vanwachem, 2008, “Derivation and Validation of a Novel Implicit Second-Order Accurate Immersed Boundary Method,” J. Comput. Phys., 227(13), pp. 6660–6680) for enforcing boundary conditions on curved geometries is used for simulations. Three subgrid scale (SGS) models, namely, the classical Smagorinsky model (Smagorinsky, 1963, “General Circulation Experiments With the Primitive Equations,” Mon. Weather Rev., 91(10), pp. 99–164), recently developed Vreman model (Vreman, 2004, “An Eddy-Viscosity Subgrid-Scale Model for Turbulent Shear Flow: Algebraic Theory and Applications,” Phys. Fluids, 16(10), pp. 3670–3681), and the Sigma model (Nicoud et al., 2011, “Using Singular Values to Build a Subgrid-Scale Model for Large Eddy Simulations,” Phys. Fluids, 23(8), 085106) are evaluated in the present study. Evaluation of SGS models suggests that the classical constant coefficient Smagorinsky model gives best agreement with the DNS data, whereas the Vreman and Sigma models predict an early transition to turbulence in the poststenotic region. Supplementary simulations are performed using Open source field operation and manipulation (OpenFOAM) (“OpenFOAM,” http://www.openfoam.org/) solver and the results are inline with those obtained with WenoHemo.

References

References
1.
Ku
,
D. N.
,
1997
, “
Blood Flow in Arteries
,”
Annu. Rev. Fluid Mech.
,
101
(
1
), pp.
157
434
.
2.
Giddens
,
D. P.
,
Zarins
,
C. K.
, and
Glagov
,
S.
,
1993
, “
The Role of Fluid Mechanics in the Localization and Detection of Atherosclerosis
,”
ASME J. Biomech. Eng.
,
115
(
4B
), pp.
588
594
.10.1115/1.2895545
3.
Ahmed
,
S.
, and
Giddens
,
D.
,
1983
, “
Velocity Measurements in Steady Flow Through Axisymmetric Stenoses at Moderate Reynolds Number
,”
J. Biomech.
,
16
, pp.
505
516
.10.1016/0021-9290(83)90065-9
4.
Ahmed
,
S.
, and
Giddens
,
D.
,
1983
, “
Flow Disturbance Measurements Through a Constricted Tube at Moderate Reynolds Numbers
,”
J. Biomech.
,
16
, pp.
955
963
.10.1016/0021-9290(83)90096-9
5.
Ahmed
,
S.
, and
Giddens
,
D.
,
1984
, “
Pulsatile Poststenotic Studies With Laser Doppler Anemometry
,”
J. Biomech.
,
17
, pp.
695
705
.10.1016/0021-9290(84)90123-4
6.
Ojha
,
M.
,
Cobbold
,
C.
,
Johnston
,
K. H.
, and
Hummel
,
R. L.
,
1989
, “
Pulsatile Flow Through Constricted Tubes: An Experimental Investigation Using Photochromic Tracer Methods
,”
J. Fluid Mech.
,
203
, pp.
173
197
.10.1017/S0022112089001424
7.
Peterson
,
S. D.
, and
Plesniak
,
M. W.
,
2008
, “
The Influence of Inlet Velocity Profile and Secondary Flow on Pulsatile Flow in a Model Artery With Stenosis
,”
J. Fluid Mech.
,
616
, pp.
263
301
.10.1017/S0022112008003625
8.
Sherwin
,
S. J.
, and
Blackburn
,
H. M.
,
2005
, “
Three-Dimensional Instabilities and Transition of Steady and Pulsatile Axisymmetric Stenotic Flows
,”
J. Fluid Mech.
,
533
, pp.
297
327
.10.1017/S0022112005004271
9.
Varghese
,
S. S.
,
Frankel
,
S. H.
, and
Fischer
,
P. F.
,
2007
, “
Direct Numerical Simulation of Stenotic Flows. Part 1. Steady Flow
,”
J. Fluid Mech.
,
582
, pp.
253
280
.10.1017/S0022112007005848
10.
Varghese
,
S. S.
,
Frankel
,
S. H.
, and
Fischer
,
P. F.
,
2007
, “
Direct Numerical Simulation of Stenotic Flows. Part 2. Pulsatile Flow
,”
J. Fluid Mech.
,
582
, pp.
281
318
.10.1017/S0022112007005836
11.
Stroud
,
J. S.
,
Berger
,
S. A.
, and
Saloner
,
D.
,
2000
, “
Influence of Stenosis Morphology on Flow Through Severely Stenotic Vessels: Implications for Plaque Rupture
,”
J. Biomech.
,
33
(
4
), pp.
443
455
.10.1016/S0021-9290(99)00207-9
12.
Varghese
,
S. S.
,
Frankel
,
S. H.
, and
Fischer
,
P. F.
,
2008
, “
Modeling Transition to Turbulence in Eccentric Stenotic Flows
,”
ASME J. Biomech. Eng.
,
130
(
1
), p.
014503
.10.1115/1.2800832
13.
Tan
,
F. P. P.
,
Wood
,
N. B.
,
Tabor
,
G.
, and
Xu
,
X. Y.
,
2011
, “
Comparison of LES of Steady Transitional Flow in an Idealized Stenosed Axisymmetric Artery Model With a RANS Transitional Model
,”
ASME J. Biomech. Eng.
,
133
(
5
), p.
051001
.10.1115/1.4003782
14.
Mittal
,
R.
,
Simmons
,
S. P.
, and
Udaykumar
,
H. S.
,
2001
, “
Application of Large-Eddy Simulation to the Study of Pulsatile Flow in a Modeled Arterial Stenosis
,”
ASME J. Biomech. Eng.
,
123
(
4
), pp.
325
332
.10.1115/1.1385840
15.
Mittal
,
R.
,
Simmons
,
S. P.
, and
Najjar
,
F.
,
2003
, “
Numerical Study of Pulsatile Flow in a Constricted Channel
,”
J. Fluid Mech.
,
485
, pp.
337
378
.10.1017/S002211200300449X
16.
Paul
,
M. C.
,
Mamun Molla
,
M.
, and
Roditi
,
G.
,
2009
, “
Large-Eddy Simulation of Pulsatile Blood Flow
,”
Med. Eng. Phys.
,
31
(
1
), pp.
153
159
.10.1016/j.medengphy.2008.04.014
17.
Smagorinsky
,
J.
,
1963
, “
General Circulation Experiments With the Primitive Equations
,”
Mon. Weather Rev.
,
91
(
10
), pp.
99
164
.10.1175/1520-0493(1963)091<0099:GCEWTP>2.3.CO;2
18.
Vreman
,
A. W.
,
2004
, “
An Eddy-Viscosity Subgrid-Scale Model for Turbulent Shear Flow: Algebraic Theory and Applications
,”
Phys. Fluids
,
16
(
10
), pp.
3670
3681
.10.1063/1.1785131
19.
Nicoud
,
F.
,
Toda
,
H. B.
,
Cabrit
,
O.
,
Bose
,
S.
, and
Lee
,
J.
,
2011
, “
Using Singular Values to Build a Subgrid-Scale Model for Large Eddy Simulations
,”
Phys. Fluids
,
23
(
8
), p.
085106
.10.1063/1.3623274
20.
Shetty
,
D. A.
,
Fisher
,
T. C.
,
Chunekar
,
A. R.
, and
Frankel
,
S. H.
,
2010
, “
High-Order Incompressible Large-Eddy Simulation of Fully Inhomogeneous Turbulent Flows
,”
J. Comput. Phys.
,
229
(
23
), pp.
8802
8822
.10.1016/j.jcp.2010.08.011
21.
Mark
,
A.
, and
Vanwachem
,
B.
,
2008
, “
Derivation and Validation of a Novel Implicit Second-Order Accurate Immersed Boundary Method
,”
J. Comput. Phys.
,
227
(
13
), pp.
6660
6680
.10.1016/j.jcp.2008.03.031
22.
“OpenFOAM,” http://www.openfoam.org/
23.
Ghaisas
,
N.
,
Shetty
,
D.
, and
Frankel
,
S.
,
2013
, “
Large Eddy Simulation of Thermal Driven Cavity: Evaluation of Sub-Grid Scale Models and Flow Physics
,”
Int. J. Heat Mass Transfer
,
56
(
1
), pp.
606
624
.10.1016/j.ijheatmasstransfer.2012.09.055
24.
Jiang
,
G.-S.
, and
Shu
,
C.-W.
,
1996
, “
Efficient Implementation of Weighted ENO Schemes
,”
J. Comput. Phys.
,
228
(
126
), pp.
202
228
.10.1006/jcph.1996.0130
25.
Gustafsson
,
B.
,
2008
,
High Order Difference Methods for Time Dependent PDE
(
Springer Series in Computational Mathematics
),
Springer, Berlin
.
26.
Shetty
,
D. A.
,
Shen
,
J.
,
Chandy
,
A. J.
, and
Frankel
,
S. H.
,
2011
, “
A Pressure-Correction Scheme for Rotational Navier–Stokes Equations and Its Application to Rotating Turbulent Flows 1 Introduction 2 Mathematical formulation
,”
J. Comput. Phys.
,
9
(
3
), pp.
740
755
.
27.
Delorme
,
Y.
,
Anupindi
,
K.
,
Kerlo
,
A.
,
Shetty
,
D.
,
Rodefeld
,
M.
,
Chen
,
J.
, and
Frankel
,
S.
,
2013
, “
Large Eddy Simulation of Powered Fontan Hemodynamics
,”
J. Biomech.
,
46
(
2
), pp.
408
422
.10.1016/j.jbiomech.2012.10.045
28.
Delorme
,
Y.
,
Anupindi
,
K.
, and
Frankel
,
S. H.
,
2013
, “
Large Eddy Simulation of FDA's Idealized Medical Device
,”
Cardiovasc. Eng. Tech.
,
4
(
4
), pp.
392–407
.10.1007/s13239-013-0161-7
30.
Jeong
,
J.
, and
Hussain
,
F.
,
1995
, “
On the Identification of a Vortex
,”
J. Fluid Mech.
,
285
, pp.
69
94
.10.1017/S0022112095000462
31.
Leriche
,
E.
, and
Gavrilakis
,
S.
,
2000
, “
Direct Numerical Simulation of the Flow in a Lid-Driven Cubical Cavity
,”
Phys. Fluids
,
12
(
6
), pp.
1363
1376
.10.1063/1.870387
32.
Meyers
,
J.
,
Geurts
,
B. J.
, and
Baelmans
,
M.
,
2005
, “
Optimality of the Dynamic Procedure for Large-Eddy Simulations
,”
Phys. Fluids
,
17
(
4
), p.
045108
.10.1063/1.1879054
You do not currently have access to this content.