This paper describes a methodology for selecting a set of biomechanical engineering design variables to optimize the performance of an engineered meniscal substitute when implanted in a population of subjects whose characteristics can be specified stochastically. For the meniscal design problem where engineering variables include aspects of meniscal geometry and meniscal material properties, this method shows that meniscal designs having simultaneously large radial modulus and large circumferential modulus provide both low mean peak contact stress and small variability in peak contact stress when used in the specified subject population. The method also shows that the mean peak contact stress is relatively insensitive to meniscal permeability, so the permeability used in the manufacture of a meniscal substitute can be selected on the basis of manufacturing ease or cost. This is a multiple objective problem with the mean peak contact stress over the population of subjects and its variability both desired to be small. The problem is solved by using a predictor of the mean peak contact stress across the tibial plateau that was developed from experimentally measured peak contact stresses from two modalities. The first experimental modality provided computed peak contact stresses using a finite element computational simulator of the dynamic tibial contact stress during axial dynamic loading. A small number of meniscal designs with specified subject environmental inputs were selected to make computational runs and to provide training data for the predictor developed below. The second experimental modality consisted of measured peak contact stress from a set of cadaver knees. The cadaver measurements were used to bias-correct and calibrate the simulator output. Because the finite element simulator is expensive to evaluate, a rapidly computable (calibrated) Kriging predictor was used to explore extensively the contact stresses for a wide range of meniscal engineering inputs and subject variables. The predicted values were used to determine the Pareto optimal set of engineering inputs to minimize peak contact stresses in the targeted population of subjects.

References

References
1.
Makris
,
E. A.
,
Hadidi
,
P.
, and
Athanasiou
,
K. A.
,
2011
, “
The Knee Meniscus: Structure-Function, Pathophysiology, Current Repair Techniques, and Prospects for Regeneration
,”
Biomaterials
,
32
, pp.
7411
7431
.10.1016/j.biomaterials.2011.06.037
2.
Rodkey
,
W. G.
,
2000
, “
Basic Biology of the Meniscus and Response to Injury
,”
Instrum. Course Lect.
,
49
, pp.
189
193
.
3.
Fairbank
,
T. J.
,
1948
, “
Knee Joint Changes After Meniscectomy
,”
J. Bone Jt. Surg. Br. Vol.
,
30
, pp.
664
670
.
4.
Allen
,
P. R.
,
Denham
,
R. A.
, and
Swan
,
A. V.
,
1984
, “
Late Degenerative Changes After Meniscectomy
,”
J. Bone Jt. Surg. Br. Vol.
,
66
, pp.
666
671
.
5.
Bloecker
,
K.
,
Englund
,
M.
,
Wirth
,
W.
,
Hudelmaier
,
M.
,
Burgkart
,
R.
,
Frobell
,
R.
, and
Eckstein
,
F.
,
2011
, “
Size and Position of the Healthy Meniscus, and Its Correlation With Sex, Height, Weight, and Bone Area—A Cross-Sectional Study
,”
BMC Musculoskeletal Disord.
,
12
(
1
), p.
248
.10.1186/1471-2474-12-248
6.
Haut Donahue
,
T. L.
,
Hull
,
M. L.
,
Rashid
,
M. M.
, and
Jacobs
,
C. R.
,
2004
, “
The Sensitivity of Tibiofemoral Contact Pressure to the Size and Shape of the Lateral and Medial Menisci
,”
J. Orthop. Res.
,
22
(
4
), pp.
807
814
.10.1016/j.orthres.2003.12.010
7.
Haut
,
T. L.
,
Hull
,
M. L.
, and
Howell
,
S. M.
,
2000
, “
Use of Roentgenography and Magnetic Resonance Imaging to Predict Meniscal Geometry Determined With a Three-Dimensional Coordinate Digitizing System
,”
J. Orthop. Res.
,
18
(
2
), pp.
228
237
.10.1002/jor.1100180210
8.
Tissakht
,
M.
, and
Ahmed
,
A. M.
,
1995
, “
Tensile Stress-Strain Characteristics of the Human Meniscal Material
,”
J. Biomech.
,
28
(
4
), pp.
411
422
.10.1016/0021-9290(94)00081-E
9.
Fithian
,
D. C.
,
Kelly
,
M. A.
, and
Mow
,
V. C.
,
1990
, “
Material Properties and Structure-Function Relationships in the Menisci
,”
Clin. Orthop. Relat. Res.
,
252
, pp.
19
31
.10.1097/00003086-199003000-00004
10.
Sweigart
,
M. A.
,
Zhu
,
C. F.
,
Burt
,
D. M.
,
DeHoll
,
P. D.
,
Agrawal
,
C. M.
,
Clanton
,
T. O.
, and
Athanasiou
,
K. A.
,
2004
, “
Intraspecies and Interspecies Comparison of the Compressive Properties of the Medial Meniscus
,”
Ann. Biomed. Eng.
,
32
(
11
), pp.
1569
1579
.10.1114/B:ABME.0000049040.70767.5c
11.
Li
,
G.
,
Park
,
S. E.
,
DeFrate
,
L. E.
,
Schutzer
,
M. E.
,
Ji
,
L.
,
Gill
,
T. J.
, and
Rubash
,
H. E.
,
2005
, “
The Cartilage Thickness Distribution in the Tibiofemoral Joint and Its Correlation With Cartilage-to-Cartilage Contact
,”
Clin. Biomech.
20
, pp.
736
744
.10.1016/j.clinbiomech.2005.04.001
12.
Eckstein
,
F.
,
Yang
,
M.
,
Guermazi
,
A.
,
Roemer
,
F.
,
Hudelmaier
,
M.
,
Picha
,
K.
,
Baribaud
,
F.
,
Wirth
,
W.
, and
Felson
,
D.
,
2010
, “
Reference Values and Z-Scores for Subregional Femorotibial Cartilage Thickness Results From a Large Population-Based Sample (Framingham) and Comparison With the Non-Exposed Osteoarthritis Initiative Reference Cohort
,”
Osteoarthritis Cartilage
,
18
(
10
), pp.
1275
1283
.10.1016/j.joca.2010.07.010
13.
Akizuki
,
S.
,
Mow
,
V. C.
,
Müller
,
F.
,
Pita
,
J. C.
,
Howell
,
D. S.
, and
Manicourt
,
D. H.
,
1986
, “
Tensile Properties of Human Knee Joint Cartilage: I. Influence of Ionic Conditions, Weight Bearing, and Fibrillation on the Tensile Modulus
,”
J. Orthop. Res.
,
4
(
4
), pp.
379
392
.10.1002/jor.1100040401
14.
Mow
,
V. C.
,
Gu
,
W. Y.
, and
Chen
,
F. H.
,
2005
, “
Structure and Function of Articular Cartilage and Meniscus
,”
Basic Orthopaedic Biomechanics and Mechano-Biology
,
V. C.
Mow
and
R.
Huiskes
, eds.,
Lippincott, Williams, and Wilkins
,
Philadelphia
, pp.
181
258
.
15.
Armstrong
,
C. G.
, and
Mow
,
V. C.
,
1982
, “
Variations in the Intrinsic Mechanical Properties of Human Articular Cartilage With Age, Degeneration, and Water Content
,”
J. Bone Joint Surg. Am.
,
64
(
1
), pp.
88
94
.
16.
Guo
,
H.
,
Maher
,
S. A.
, and
Spilker
,
R. L.
,
2013
, “
Biphasic Finite Element Contact Analysis of the Knee Joint Using an Augmented Lagrangian Method
,”
Med. Eng. Phys.
,
35
(
9
), pp.
1313
1320
.10.1016/j.medengphy.2013.02.003
17.
Donzelli
,
P. S.
,
1995
, “
A Mixed-Penalty Contact Finite Element Formulation for Biphasic Soft Tissue
,” Ph.D. thesis, Rensselaer Polytechnic Institute, Troy, NY.
18.
International Organization for Standardization
,
2009
, “
Implants for Surgery—Wear of Total Knee-Joint Prostheses—Loading and Displacement Parameters for Wear-Testing Machines With Load Control and Corresponding Environmental Conditions for Test
,” International Organization for Standardization, Geneva, ISO 14243-1:2002(E).
19.
Guo
,
H.
, and
Spilker
,
R. L.
,
2011
, “
Biphasic Finite Element Modeling of Hydrated Soft Tissue Contact Using an Augmented Lagrangian Method
,”
ASME J. Biomech. Eng.
,
133
(
11
), p.
111001
.10.1115/1.4005378
20.
Guo
,
H.
,
Nickel
,
J. C.
,
Iwasaki
,
L. R.
, and
Spilker
,
R. L.
,
2012
, “
An Augmented Lagrangian Method for Sliding Contact of Soft Tissue
,”
ASME J. Biomech. Eng.
,
134
(
8
), p.
084503
.10.1115/1.4007177
21.
Guo
,
H.
, and
Spilker
,
R. L.
,
2014
, “
An Augmented Lagrangian Finite Element Formulation for 3D Contact of Biphasic Tissues
,”
Comput. Methods Biomech. Biomed. Eng.
,
17
(11), pp.
1206
1216
.10.1080/10255842.2012.739166
22.
Guo
,
H.
,
Shah
,
M.
, and
Spilker
,
R. L.
,
2014
, “
A Finite Element Implementation for Biphasic Contact of Hydrated Porous Media Under Finite Deformation and Sliding
,”
Proc. Inst. Mech. Eng.
, Part H,
228
(3), pp.
225
236
. 10.1177/0954411914522782
23.
Higdon
,
D.
,
Kennedy
,
M.
,
Cavendish
,
J.
,
Cafeo
,
J.
, and
Ryne
,
R.
,
2004
, “
Combining Field Data and Computer Simulations for Calibration and Prediction
,”
SIAM J. Sci. Comput.
,
26
, pp.
448
466
.10.1137/S1064827503426693
24.
Saltelli
,
A.
,
Chan
,
K.
, and
Scott
,
E.
,
2000
,
Sensitivity Analysis
,
John Wiley & Sons
,
Chichester
.
25.
Santner
,
T. J.
,
Williams
,
B. J.
, and
Notz
,
W. I.
,
2003
,
The Design and Analysis of Computer Experiments
,
Springer Verlag
,
New York
.
26.
Gattiker
,
J. R.
,
2008
, “
Gaussian Process Models for Simulation Analysis (GPM/SA) Command, Function, and Data Structure Reference
,” Los Alamos National Laboratory, Technical Report LA-UR-08-08057.
27.
Higdon
,
D.
,
Gattiker
,
J.
,
Williams
,
B.
, and
Rightley
,
M.
,
2008
, “
Computer Model Calibration Using High Dimensional Output
,”
J. Am. Stat. Assoc.
,
103
, pp.
570
583
.10.1198/016214507000000888
28.
Draguljić
,
D.
,
Santner
,
T. J.
, and
Dean
,
A. M.
,
2012
, “
Non-Collapsing Spacing-Filling Designs for Bounded Polygonal Regions
,”
Technometrics
,
54
, pp.
169
178
.10.1080/00401706.2012.676951
29.
Efron
,
B.
, and
Tibshirani
,
R.
,
1997
, “
Improvements on Cross-Validation: The .632+ Bootstrap Method
,”
J. Am. Stat. Assoc.
,
92
, pp.
548
560
.10.2307/2965703
30.
Coello Coello
,
C. A.
,
Lamont
,
G. B.
, and
Van Veldhuizen
,
D. A.
,
2006
,
Evolutionary Algorithms for Solving Multi-Objective Problems (Genetic and Evolutionary Computation)
,
Springer-Verlag, New York, Inc.
,
Secaucus, NJ
.
31.
Forrester
,
A.
,
Sóbester
,
A.
, and
Keane
,
A.
,
2007
, “
Multi-Fidelity Optimization Via Surrogate Modeling
,”
Proc. R. Soc. A
,
463
(
2088
), pp.
3251
3269
.10.1098/rspa.2007.1900
32.
Audet
,
C.
,
Savard
,
G.
, and
Zghal
,
W.
,
2010
, “
A Mesh Adaptive Direct Search Algorithm for Multiobjective Optimization
,”
Eur. J. Oper. Res.
,
204
, pp.
545
556
.10.1016/j.ejor.2009.11.010
33.
Meakin
,
J. R.
,
Shrive
,
N. G.
,
Frank
,
C. B.
, and
Hart
,
D. A.
,
2003
, “
Finite Element Analysis of the Meniscus: The Influence of Geometry and Material Properties on Its Behaviour
,”
Knee
,
10
(
1
), pp.
33
41
.10.1016/S0968-0160(02)00106-0
34.
Haut Donahue
,
T. L.
,
Hull
,
M. L.
,
Rashid
,
M. M.
, and
Jacobs
,
C. R.
,
2003
, “
How the Stiffness of Meniscal Attachments and Meniscal Material Properties Affect Tibio-Femoral Contact Pressure Computed Using a Validated Finite Element Model of the Human Knee Joint
,”
J. Biomech.
,
36
(
1
), pp.
19
34
.10.1016/S0021-9290(02)00305-6
35.
Haut Donahue
,
T. L.
,
Hull
,
M. L.
, and
Howell
,
S. M.
,
2006
, “
New Algorithm for Selecting Meniscal Allografts that Best Match the Size and Shape of the Damaged Meniscus
,”
J. Orthop. Res.
,
24
(
7
), pp.
1535
1543
.10.1002/jor.20155
36.
Mow
,
V. C.
,
Kuei
,
S. C.
,
Lai
,
W. M.
, and
Armstrong
,
C. G.
,
1980
, “
Biphasic Creep and Stress Relaxation of Articular Cartilage in Compression, Theory, and Experiments
,”
ASME J. Biomech. Eng.
,
102
(1), pp.
73
84
.10.1115/1.3138202
37.
Kelly
,
B. T.
,
Robertson
,
W.
,
Potter
,
H. G.
,
Deng
,
X. H.
,
Turner
,
A. S.
,
Lyman
,
S.
,
Warren
,
R. F.
, and
Rodeo
,
S. A.
,
2007
, “
Hydrogel Meniscal Replacement in the Sheep Knee: Preliminary Evaluation of Chondroprotective Effects
,”
Am. J. Sports Med.
,
35
, pp.
43
52
.10.1177/0363546506292848
38.
Messner
,
K.
, and
Gillquist
,
J.
,
1993
, “
Prosthetic Replacement of the Rabbit Medial Meniscus
,”
J. Biomed. Mater. Res.
,
27
, pp.
1165
1173
.10.1002/jbm.820270907
39.
Setton
,
L. A.
,
Guilak
,
F.
,
Hsu
,
E. W.
, and
Vail
,
T. P.
,
1999
, “
Biomechanical Factors in Tissue Engineered Meniscal Repair
,”
Clin. Orthop. Relat. Res.
,
367S
, pp.
254
272
.10.1097/00003086-199910001-00025
40.
Hutchinson
,
I. D.
,
Moran
,
C. J.
,
Potter
,
H. G.
,
Warren
,
R. F.
, and
Rodeo
,
S. A.
,
2014
, “
Restoration of the Meniscus: Form and Function
,”
Amer. J. Sports Med.
,
42
(4), pp.
987
998
.10.1177/0363546513498503
41.
Alhalki
,
M. M.
,
Howell
,
S. M.
, and
Hull
,
M. L.
,
1999
, “
How Three Methods for Fixing a Medial Meniscal Autograft Affect Tibial Contact Mechanics
,”
Am. J. Sports Med.
,
27
, pp.
320
328
.
42.
Dienst
,
M.
,
Greis
,
P. E.
,
Ellis
,
B. J.
,
Bachus
,
K. N.
, and
Burks
,
R. T.
,
2007
, “
Effect of Lateral Meniscal Allograft Sizing on Contact Mechanics of the Lateral Tibial Plateau: An Experimental Study in Human Cadaveric Knee Joints
,”
Am. J. Sports Med.
,
35
(
1
), pp.
34
42
.10.1177/0363546506291404
43.
Rodeo
,
S. A.
,
2001
, “
Meniscal Allografts—Where Do We Stand
,”
Am. J. Sports Med.
,
29
(
2
), pp.
246
261
.
44.
Karvonen
,
R. L.
,
Negendank
,
W. G.
,
Teitge
,
R. A.
,
Reed
,
A. H.
,
Miller
,
P. R.
, and
Fernandez-Madrid
,
F.
,
1994
, “
Factors Affecting Articular Cartilage Thickness in Osteoarthritis and Aging
,”
J. Rheumatol.
,
21
(
7
), pp.
1310
1318
.
45.
Holmes
,
M.
, and
Mow
,
V.
,
1990
, “
The Nonlinear Characteristics of Soft Gels and Hydrated Connective Tissues in Ultrafiltration
,”
J. Biomech.
,
23
, pp.
1145
1156
.10.1016/0021-9290(90)90007-P
46.
Gilbert
,
S.
,
Chen
,
T.
,
Hutchinson
,
I. D.
,
Choi
,
D.
,
Voigt
,
C.
,
Warren
,
R. F.
, and
Maher
,
S. A.
,
2013
, “
Dynamic Contact Mechanics on the Tibial Plateau of the Human Knee During Activities of Daily Living
,”
J. Biomech.
, (in press).10.1016/j.jbiomech.2013.11.003
You do not currently have access to this content.