Physiological loads that act on the femoropopliteal artery, in combination with stenting, can lead to uncharacteristic deformations of the stented vessel. The overall goal of this study was to investigate the effect of stent length and stent location on the deformation characteristics of the superficial femoral artery (SFA) using an anatomically accurate, three-dimensional finite element model of the leg. For a range of different stent lengths and locations, the deformation characteristics (length change, curvature change, and axial twist) that result from physiological loading of the SFA along with the mechanical behavior of the vessel tissue are investigated. Results showed that stenting portions of the SFA leads to a change in global deformation characteristics of the vessel. Increased stress and strain values and altered deformation characteristics were observed in the various stented cases of this study, which are compared to previous results of an unstented vessel. The study concludes that shortening, twist and curvature characteristics of the stented vessel are dependent on stent length and stent location within the vessel.

References

References
1.
Smouse
,
B.
,
Nikanorov
,
A.
, and
Laflash
,
D.
,
2005
, “
Biomechanical Forces in the Femoropopliteal Arterial Segment
,”
Endovasc. Today
,
4
(
6
), pp.
60
66
.
2.
Jonker
,
F. S.
,
Moll
,
F.
, and
Muhs
,
B.
,
2008
, “
Dynamic Forces in the SFA and Popliteal Artery During Knee Flexion
,”
Endovasc. Today
,
53
(
5
), pp.
53
58
.
3.
Scheinert
,
D.
,
Scheinert
,
S.
,
Sax
,
J.
,
Piorkowski
,
C.
,
Bräunlich
,
S.
,
Ulrich
,
M.
,
Biamino
,
G.
, and
Schmidt
,
A.
,
2005
, “
Prevalence and Clinical Impact of Stent Fractures After Femoropopliteal Stenting
,”
J. Am. Coll. Cardiol.
,
45
(
2
), pp.
312
315
.10.1016/j.jacc.2004.11.026
4.
Wensing
,
P.
,
Scholten
,
F.
,
Buijs
,
P.
,
Hartkamp
,
M.
,
Mali
,
W.
, and
Hillen
,
B.
,
1995
, “
Arterial Tortuosity in the Femoropopliteal Region During Knee Flexion: A Magnetic Resonance Angiographic Study
,”
J. Anat.
,
187
(Pt
1
), pp.
133
139
.
5.
Rits
,
J.
,
Van Herwaarden
,
J.
,
Jahrome
,
A.
,
Krievins
,
D.
, and
Moll
,
F.
,
2008
, “
The Incidence of Arterial Stent Fractures With Exclusion of Coronary, Aortic, and Non-Arterial Settings
,”
Eur. J. Vasc. Endovasc. Surg.
,
36
(
3
), pp.
339
345
.10.1016/j.ejvs.2008.05.005
6.
Jaff
,
M. R.
,
2012
, “
Advances in the Management of Patients With Vascular Disease
,”
Expert Rev. Cardiovasc. Ther.
,
10
(
2
), pp.
151
153
.10.1586/erc.11.183
7.
Scheinert
,
D.
,
2012
, “
Treatment Paradigms for the Superficial Femoral Arteryare They a-Changin?
,”
JACC: Cardiovasc. Interventions
,
5
(
3
), pp.
339
340
.10.1016/j.jcin.2012.01.003
8.
Ansari
,
F.
,
Pack
,
L. K.
,
Brooks
,
S. S.
, and
Morrison
,
T. M.
,
2013
, “
Design Considerations for Studies of the Biomechanical Environment of the Femoropopliteal Arteries
,”
J. Vasc. Surg.
,
58
(
3
), pp.
804
813
.10.1016/j.jvs.2013.03.052
9.
Klein
,
A. J.
,
James Chen
,
S.
,
Messenger
,
J. C.
,
Hansgen
,
A. R.
,
Plomondon
,
M. E.
,
Carroll
,
J. D.
, and
Casserly
,
I. P.
,
2009
, “
Quantitative Assessment of the Conformational Change in the Femoropopliteal Artery With Leg Movement
,”
Catheterization Cardiovasc. Interventions
,
74
(
5
), pp.
787
798
.10.1002/ccd.22124
10.
Cheng
,
C. P.
,
Wilson
,
N. M.
,
Hallett
,
R. L.
,
Herfkens
,
R. J.
, and
Taylor
,
C. A.
,
2006
, “
In Vivo Mr Angiographic Quantification of Axial and Twisting Deformations of the Superficial Femoral Artery Resulting From Maximum Hip and Knee Flexion
,”
J. Vasc. Interventional Radiol.
,
17
(
6
), pp.
979
987
.10.1097/01.RVI.0000220367.62137.E8
11.
Ní Ghriallais
,
R.
, and
Bruzzi
,
M.
,
2013
, “
Effects of Knee Flexion on the Femoropopliteal Artery: A Computational Study
,”
Med. Eng. Phys.
,
35
(
11
), pp.
1620
1628
.10.1016/j.medengphy.2013.05.015
12.
Rho
,
J. Y.
,
Ashman
,
R. B.
, and
Turner
,
C. H.
,
1993
, “
Young's Modulus of Trabecular and Cortical Bone Material: Ultrasonic and Microtensile Measurements
,”
J. Biomech.
,
26
(
2
), pp.
111
119
.10.1016/0021-9290(93)90042-D
13.
Holzapfel
,
G. A.
,
Sommer
,
G.
,
Gasser
,
C. T.
, and
Regitnig
,
P.
,
2005
, “
Determination of Layer-Specific Mechanical Properties of Human Coronary Arteries With Non Atherosclerotic Intimal Thickening and Related Constitutive Modeling
,”
Am. J. Physiol.: Heart Circ. Physiol.
,
289
(
5
), pp.
H2048
H2058
.
14.
Gastaldi
,
D.
,
Morlacchi
,
S.
,
Nichetti
,
R.
,
Capelli
,
C.
,
Dubini
,
G.
,
Petrini
,
L.
, and
Migliavacca
,
F.
,
2010
, “
Modelling of the Provisional Side-Branch Stenting Approach for the Treatment of Atherosclerotic Coronary Bifurcations: Effects of Stent Positioning
,”
Biomech. Model. Mechanobiol.
,
9
(
5
), pp.
551
561
.10.1007/s10237-010-0196-8
15.
Simons
,
J.
,
Dalal
,
A.
, and
Shockey
,
D.
,
2010
, “
Load-Deformation Behavior of Nitinol Stents
,”
Exp. Mech.
,
50
(
6
), pp.
835
843
.10.1007/s11340-010-9341-7
16.
Mozersky
,
D. J.
,
Sumnfr
,
D. S.
,
Hokanson
,
D. E.
, and
Strandness
,
D. E.
, Jr.
,
1972
, “
Transcutaneous Measurement of the Elastic Properties of the Human Femoral Artery
,”
Circulation
,
46
(
5
), pp.
948
955
.10.1161/01.CIR.46.5.948
17.
Tittelbaugh
,
E.
,
Fu
,
R.
, and
Sett
,
S.
,
2007
, “Coupling FEA to CFD to Investigate the Effects of Pulsatile Blood Flow on the Dilatation of Artery Walls.”
18.
Rebelo
,
N.
,
Fu
,
R.
, and
Lawrenchuk
,
M.
,
2009
, “
Study of a Nitinol Stent Deployed Into Anatomically Accurate Artery Geometry and Subjected to Realistic Service Loading
,”
J. Mater. Eng. Perform
.,
18
(
5-6
), pp.
655
663
.10.1007/s11665-009-9375-0
19.
Shacham
,
S.
,
Castel
,
D.
, and
Gefen
,
A.
,
2010
, “
Measurements of the Static Friction Coefficient Between Bone and Muscle Tissues
,”
ASME J. Biomech. Eng.
,
132
(
8
), p.
084502
.10.1115/1.4001893
20.
Tang
,
C.
,
Chan
,
W.
, and
Tsui
,
C.
,
2010
, “
Finite Element Analysis of Contact Pressures Between Seat Cushion and Human Buttock-Thigh Tissue
,”
Engineering
,
2
(
9
), pp.
720
726
.10.4236/eng.2010.29093
21.
Cheng
,
C. P.
,
Choi
,
G.
,
Herfkens
,
R. J.
, and
Taylor
,
C. A.
,
2010
, “
The Effect of Aging on Deformations of the Superficial Femoral Artery Resulting From Hip and Knee Flexion: Potential Clinical Implications
,”
J. Vasc. Interventional Radiol.
,
21
(
2
), pp.
195
202
.10.1016/j.jvir.2009.08.027
22.
Choi
,
G.
,
Cheng
,
C. P.
,
Wilson
,
N. M.
, and
Taylor
,
C. A.
,
2009
, “
Methods for Quantifying Three-Dimensional Deformation of Arteries due to Pulsatile and Nonpulsatile Forces: Implications for the Design of Stents and Stent Grafts
,”
Ann. Biomed. Eng.
,
37
(
1
), pp.
14
33
.10.1007/s10439-008-9590-0
23.
Arena
,
F. J.
,
2005
, “
Arterial Kink and Damage in Normal Segments of the Superficial Femoral and Popliteal Arteries Abutting Nitinol Stents—A Common Cause of Late Occlusion and Restenosis? A Single-Center Experience
,”
J. Invasive Cardiol.
,
17
(
9
), pp.
482
486
.
24.
Duerig
,
T.
, and
Wholey
,
M.
,
2002
, “
A Comparison of Balloon- and Self-Expanding Stents
,”
Minimally Invasive Ther. Allied Technol.
,
11
(
4
), pp.
173
178
.10.1080/136457002760273386
25.
Timmins
,
L. H.
,
Miller
,
M. W.
,
Clubb
,
F. J.
, and
Moore
,
J. E.
,
2011
, “
Increased Artery Wall Stress Post-Stenting Leads to Greater Intimal Thickening
,”
Lab. Invest.
,
91
(
6
), pp.
955
967
.10.1038/labinvest.2011.57
26.
Grujicic
,
M.
,
Pandurangan
,
B.
,
Arakere
,
G.
,
Bell
,
W. C.
,
He
,
T.
, and
Xie
,
X.
,
2009
, “
Seat-Cushion and Soft-Tissue Material Modeling and a Finite Element Investigation of the Seating Comfort for Passenger-Vehicle Occupants
,”
Mater. Des.
,
30
(
10
), pp.
4273
4285
.10.1016/j.matdes.2009.04.028
You do not currently have access to this content.