Approximately 50% of women and 25% of men will have an osteoporosis-related fracture after the age of 50, yet the micromechanical origin of these fractures remains unclear. Preventing these fractures requires an understanding of compression fracture formation in vertebral cancellous bone. The immediate research goal was to create clinically relevant (midvertebral body and endplate) fractures in three-vertebrae motion segments subject to physiologically realistic compressional loading conditions. Six three-vertebrae motion segments (five cervine, one cadaver) were potted to ensure physiologic alignment with the compressive load. A 3D microcomputed tomography (microCT) image of each motion segment was generated. The motion segments were then preconditioned and monotonically compressed until failure, as identified by a notable load drop (48–66% of peak load in this study). A second microCT image was then generated. These three-dimensional images of the cancellous bone structure were inspected after loading to qualitatively identify fracture location and type. The microCT images show that the trabeculae in the cervine specimens are oriented similarly to those in the cadaver specimen. In the cervine specimens, the peak load prior to failure is highest for the L4–L6 motion segment, and decreases for each cranially adjacent motion segment. Three motion segments formed endplate fractures and three formed midvertebral body fractures; these two fracture types correspond to clinically observed fracture modes. Examination of normalized-load versus normalized-displacement curves suggests that the size (e.g., cross-sectional area) of a vertebra is not the only factor in the mechanical response in healthy vertebral specimens. Furthermore, these normalized-load versus normalized-displacement data appear to be grouped by the fracture type. Taken together, these results show that (1) the loading protocol creates fractures that appear physiologically realistic in vertebrae, (2) cervine vertebrae fracture similarly to the cadaver specimen under these loading conditions, and (3) that the prefracture load response may predict the impending fracture mode under the loading conditions used in this study.

References

References
1.
NOF
,
2013
, “
National Osteoporosis Foundation—Debuning the Myths, Fast Facts—Fractures
.” Available at: http://www.Nof.Org,
2011
.
2.
AANS
,
2007
, “
American Association of Neurological Surgeons—Vertebral Compression Fractures
.” Available at: http://www.Aans.Org,
2013
.
3.
Delmas
,
P. D.
,
van de Langerijt
,
L.
, and
Watts
,
N. B.
,
2005
, “
Underdiagnosis of Vertebral Fractures is a Worldwide Problem: The IMPACT Study
,”
J. Bone Miner. Res.
,
20
(
4
), pp.
557
563
.10.1359/JBMR.041214
4.
Rapillard
,
L.
,
Charlebois
,
M.
, and
Zysset
,
P. K.
,
2006
, “
Compressive Fatigue Behavior of Human Vertebral Trabecular Bone
,”
J. Biomech.
,
39
(
11
), pp.
2133
2139
.10.1016/j.jbiomech.2005.04.033
5.
Keller
,
T. S.
,
1994
, “
Predicting the Compressive Mechanical Behavior of Bone
,”
J. Biomech.
,
27
(
9
), pp.
1159
1168
.10.1016/0021-9290(94)90056-6
6.
Race
,
A.
,
Miller
,
M. A.
, and
Mann
,
K. A.
,
2010
, “
Novel Methods to Study Functional Loading Micromechanics at the Stem–Cement and Cement-Bone Interface in Cemented Femoral Hip Replacements
,”
J. Biomech.
,
43
(
4
), pp.
788
791
.10.1016/j.jbiomech.2009.10.021
7.
Race
,
A.
,
Mann
,
K. A.
, and
Edidin
,
A. A.
,
2007
, “
Mechanics of Bone/PMMA Composite Structures: An in vitro Study of Human Vertebrae
,”
J. Biomech.
,
40
(
5
), pp.
1002
1010
.10.1016/j.jbiomech.2006.04.003
8.
Ebbesen
,
E. N.
,
Thomsen
,
J. S.
, and
Beck-Nielsen
,
H.
,
1999
, “
Lumbar Vertebral Body Compressive Strength Evaluated by Dual–Energy X-Ray Absorptiometry, Quantitative Computed Tomography, and Ashing
,”
Bone
,
25
(
6
), pp.
713
724
.10.1016/S8756-3282(99)00216-1
9.
Kopperdahl
,
D. L.
,
Pearlman
,
J. L.
, and
Keaveny
,
T. M.
,
2000
, “
Biomechanical Consequences of an Isolated Overload on the Human Vertebral Body
,”
J. Orthop. Res.
,
18
(
5
) pp.
685
690
.10.1002/jor.1100180502
10.
Buckley
,
J. M.
,
Kuo
,
C. C.
, and
Cheng
,
L. C.
,
2009
, “
Relative Strength of Thoracic Vertebrae in Axial Compression Versus Flexion
,”
Spine J.
,
9
(
6
), pp.
478
485
.10.1016/j.spinee.2009.02.010
11.
Brown
,
S. H. M.
,
Gregory
,
D. E.
, and
McGill
,
S. M.
,
2008
, “
Vertebral End-Plate Fractures as a Result of High Rate Pressure Loading in the Nucleus of the Young Adult Porcine Spine
,”
J. Biomech.
,
41
(
1
), pp.
122
127
.10.1016/j.jbiomech.2007.07.005
12.
Tsai
,
K.
,
Lin
,
R.
, and
Chang
,
G.
,
1998
, “
Rate-Related Fatigue Injury of Vertebral Disc Under Axial Cyclic Loading in a Porcine Body-Disc-Body Unit
,”
Clin. Biomech.
,
13
(
Suppl 1
), pp.
S32
S39
.10.1016/S0268-0033(98)80134-4
13.
Moroney
,
S. P.
,
Schultz
,
A. B.
, and
Miller
,
J. A. A.
,
1988
, “
Load-Displacement Properties of Lower Cervical Spine Motion Segments
,”
J. Biomech.
,
21
(
9
), pp.
769
779
.10.1016/0021-9290(88)90285-0
14.
Nuckley
,
D. J.
, and
Ching
,
R. P.
,
2006
, “
Developmental Biomechanics of the Cervical Spine: Tension and Compression
,”
J. Biomech.
,
39
(
16
), pp.
3045
3054
.10.1016/j.jbiomech.2005.10.014
15.
Rostedt
,
M.
,
Ekström
,
L.
, and
Broman
,
H.
,
1998
, “
Axial Stiffness of Human Lumbar Motion Segments, Force Dependence
,”
J. Biomech.
,
31
(
6
), pp.
503
509
.10.1016/S0021-9290(98)00037-2
16.
Stokes
,
I. A. F.
,
1988
, “
Mechanical Function of Facet Joints in the Lumbar Spine
,”
Clin. Biomech.
,
3
(
2
), pp.
101
105
.10.1016/0268-0033(88)90052-6
17.
Boisclair
,
D.
,
Mac-Thiong
,
J.
, and
Parent
,
S.
,
2011
, “
Effect of Spinal Level and Loading Conditions on the Production of Vertebral Burst Fractures in a Porcine Model
,”
ASME J. Biomech. Eng.
,
133
, p.
094503
.10.1115/1.4004917
18.
Smit
,
T. H.
,
2002
, “
The Use of a Quadruped as an in vivo Model for the Study of the Spine—Biomechanical Considerations
,”
Eur. Spine J.
,
11
, pp.
137
144
.10.1007/s005860100346
19.
Kumar
,
N.
,
Kukreti
,
S.
, and
Ishaque
,
M.
,
2000
, “
Anatomy of Deer Spine and Its Comparison to the Human Spine
,”
Anat. Rec.
,
260
(
2
), pp.
189
203
.10.1002/1097-0185(20001001)260:2<189::AID-AR80>3.0.CO;2-N
20.
Corbiere
,
N. C.
,
Kafka
,
O. L.
, and
Issen
,
K. A.
,
2013
, “
Cancellous Bone Fracture Visualization Method
,”
American Society of Biomechanics 37th Annual Meeting Conference Proceedings
,
American Society of Biomechanics
, ed., Vol.
37
, pp.
453
454
.
21.
Haddock
,
S. M.
,
Yeh
,
O. C.
, and
Mummaneni
,
P. V.
,
2004
, “
Similarity in the Fatigue Behavior of Trabecular Bone Across Site and Species
,”
J. Biomech.
,
37
(
2
) pp.
181
187
.10.1016/S0021-9290(03)00245-8
22.
Stemper
,
B. D.
,
Storvik
,
S. G.
, and
Yoganandan
,
N.
,
2011
, “
A New PMHS Model for Lumbar Spine Injuries During Vertical Acceleration
,”
ASME J. Biomech. Eng.
,
133
(
8
), p.
081002
.10.1115/1.4004655
23.
Yoganandan
,
N.
,
Stemper
,
B. D.
, and
Pintar
,
F. A.
,
2013
, “
Cervical Spine Injury Biomechanics: Applications for Under Body Blast Loadings in Military Environments
,”
Clin. Biomech.
,
28
(
6
), pp.
602
609
.10.1016/j.clinbiomech.2013.05.007
24.
Ben Amor
,
I. M.
,
Roughley
,
P.
, and
Glorieux
,
F. H.
,
2013
, “
Skeletal Clinical Characteristics of Osteogenesis Imperfecta Caused by Haploinsufficiency Mutations in COL1A1
,”
J. Bone Miner. Res.
,
28
(
9
), pp.
2001
2007
.10.1002/jbmr.1942
25.
Keller
,
T. S.
,
Harrison
,
D. E.
, and
Colloca
,
C. J.
,
2003
, “
Prediction of Osteoporotic Spinal Deformity
,”
Spine
,
28
(
5
), pp.
455
462
.10.1097/01.BRS.0000048651.92777.30
26.
Gordon
,
I.
,
2004
,
Reproductive Technologies in Farm Animals
,
CABI Publishing
,
UK
, pp.
339
.
27.
Kumar
,
N.
,
Kukreti
,
S.
, and
Ishaque
,
M.
,
2002
, “
Functional Anatomy of the Deer Spine: An Appropriate Biomechanical Model for the Human Spine?
Anat. Rec.
,
266
(
2
), pp.
108
117
.10.1002/ar.10041
You do not currently have access to this content.