The purpose of this paper is to design a microfluidic apparatus capable of providing controlled flow conditions suitable for red blood cell (RBC) aggregation analysis. The linear velocity engendered from the controlled flow provides constant shear rates used to qualitatively analyze RBC aggregates. The design of the apparatus is based on numerical and experimental work. The numerical work consists of 3D numerical simulations performed using a research computational fluid dynamics (CFD) solver, Nek5000, while the experiments are conducted using a microparticle image velocimetry system. A Newtonian model is tested numerically and experimentally, then blood is tested experimentally under several conditions (hematocrit, shear rate, and fluid suspension) to be compared to the simulation results. We find that using a velocity ratio of 4 between the two Newtonian fluids, the layer corresponding to blood expands to fill 35% of the channel thickness where the constant shear rate is achieved. For blood experiments, the velocity profile in the blood layer is approximately linear, resulting in the desired controlled conditions for the study of RBC aggregation under several flow scenarios.

References

References
1.
Baskurt
,
O. K.
,
Hardeman
,
M. R.
,
Rampling
,
M. W.
, and
Maeiselman
,
H. J.
,
2007
,
Handbook of Hemorheology and Hemodynamics
,
Biomedical and Health Research, IOS Press
,
Amsterdam, The Netherlands
.
2.
Bishop
,
J. J.
,
Popel
,
A. S.
,
Intaglietta
,
M.
, and
Johnson
,
P. C.
,
2001
, “
Rheological Effects of Red Blood Cell Aggregation in the Venous Network: A Review of Recent Studies
,”
Biorheology
,
38
(
2–3
), pp.
263
274
.
3.
Pries
,
A. R.
,
Neuhaus
,
D.
, and
Gaehtgens
,
P.
,
1992
, “
Blood Viscosity in Tube Flow: Dependence on Diameter and Hematocrit
,”
Am. J. Physiol.
,
263
(
6 Pt 2
), pp.
H1770
H1778
.
4.
Cokelet
,
G. R.
,
1980
, “
Rheology and Hemodynamics
,”
Ann. Rev. Physiol.
,
42
(
1
), pp.
311
322
.10.1146/annurev.ph.42.030180.001523
5.
Schmid-Schönbein
,
H.
,
Volger
,
E.
, and
Klose
,
H. J.
,
1975
, “
Microrheology and Light Transmission of Blood
,”
Pflügers Arch. Eur. J. Physiol.
,
333
(
2
), pp.
140
155
.10.1007/BF00586913
6.
Schmid-Schönbein
,
H.
,
Gaehtgens
,
P.
, and
Hirsch
,
H.
,
1968
, “
On the Shear Rate Dependence of Red Cell Aggregation in vitro
,”
J. Clin. Invest.
,
47
(
6
), pp.
1447
1454
.10.1172/JCI105836
7.
Fåhraeus
,
R.
,
1929
, “
The Suspension Stability of the Blood
,”
Physiol. Rev.
,
9
(
2
), pp.
241
274
.
8.
Mayer
,
J.
,
Pospisil
,
Z.
, and
Litzman
,
J.
,
1992
, “
The Mechanism of Erythrocyte Sedimentation in Westergren's Examination
,”
Biorheology
,
29
(
2–3
), pp.
261
271
.
9.
Baskurt
,
O. K.
,
Uyuklu
,
M.
,
Ulker
,
P.
,
Cengiz
,
M.
,
Nemeth
,
N.
,
Alexy
,
T.
,
Shin
,
S.
,
Hardeman
,
M. R.
, and
Meiselman
,
H. J.
,
2009
, “
Comparison of Three Instruments for Measuring Red Blood Cell Aggregation
,”
Clin. Hemorheol. Microcirc.
,
43
(
4
), pp.
283
298
.10.3233/CH-2009-1240
10.
Chien
,
S.
, and
Jan
,
K.
,
1973
, “
Ultrastructural Basis of the Mechanism of Rouleaux Formation
,”
Microvas. Res.
,
5
(
2
), pp.
155
166
.10.1016/0026-2862(73)90068-X
11.
Baskurt
,
O.
,
Neu
,
B.
, and
Meiselman
,
H.
,
2011
,
Red Blood Cell Aggregation
,
Taylor and Francis
,
Boca Raton, FL
.
12.
Hardeman
,
M. R.
,
Dobbe
,
J. G.
, and
Ince
,
C.
,
2001
, “
The Laser-Assisted Optical Rotational Cell Analyzer (Lorca) as Red Blood Cell Aggregometer
,”
Clin. Hemorheol. Microcirc.
,
25
(
1
), pp.
1
11
.
13.
Bauersachs
,
R. M.
,
Wenby
,
R. B.
, and
Meiselman
,
H. J.
,
1989
, “
Determination of Specific Red Blood Cell Aggregation Indices Via an Automated System
,”
Clin. Hemorheol.
,
9
(
1
), pp.
1
25
.
14.
P. F.
Fischer
,
J. W. L.
, and
Kerkemeier
,
S. G.
,
2008
, nek5000, http://nek5000.mcs.anl.gov
15.
Mehri
,
R.
,
2012
, “
Micro PIV and Numerical Investigation of a Micro-Couette Blood Flow
,” M.S. thesis, University of Ottawa, Ottawa, ON.
16.
Wang
,
T.
,
Pan
,
T. W.
,
Xing
,
Z. W.
, and
Glowinski
,
R.
,
2009
, “
Numerical Simulation of Rheology of Red Blood Cell Rouleaux in Microchannels
,”
Phys. Rev. E
,
79
(
4
), p.
041916
.10.1103/PhysRevE.79.041916
17.
Bishop
,
J. J.
,
Popel
,
A. S.
,
Intaglietta
,
M.
, and
Johnson
,
P. C.
,
2001
, “
Effects of Erythrocyte Aggregation and Venous Network Geometry on Red Blood Cell Axial Migration
,”
Am. J. Physiol.-Heart Circ. Physiol.
,
281
(
2
), pp.
H939
H950
. Available at: http://ajpheart.physiology.org/content/ajpheart/281/2/H939.full.pdf
18.
Bishop
,
J. J.
,
Nance
,
P. R.
,
Popel
,
A. S.
,
Intaglietta
,
M.
, and
Johnson
,
P. C.
,
2004
, “
Relationship Between Erythrocyte Aggregate Size and Flow Rate in Skeletal Muscle Venules
,”
Am. J. Physiol.-Heart Circ. Physiol.
,
286
(
1
), pp.
H113
H120
.10.1152/ajpheart.00587.2003
19.
Kim
,
S.
,
Popel
,
A. S.
,
Intaglietta
,
M.
, and
Johnson
,
P. C.
,
2005
, “
Aggregate Formation of Erythrocytes in Postcapillary Venules
,”
Am. J. Physiol.-Heart Circ. Physiol.
,
288
(
2
), pp.
H584
H590
.10.1152/ajpheart.00690.2004
20.
Kim
,
S.
,
Zhen
,
J.
,
Popel
,
A. S.
,
Intaglietta
,
M.
, and
Johnson
,
P. C.
,
2007
, “
Contributions of Collision Rate and Collision Efficiency to Erythrocyte Aggregation in Postcapillary Venules at Low Flow Rates
,”
Am. J. Phys.-Heart Circ. Physiol.
,
293
(
3
), pp.
H1947
H1954
.10.1152/ajpheart.00764.2006
21.
Lima
,
R.
,
Wada
,
S.
,
Takeda
,
M.
,
Tsubota
,
K.
, and
Yamaguchi
,
T.
,
2007
, “
in vitro Confocal Micro-PIV Measurements of Blood Flow in a Square Microchannel: The Effect of the Haematocrit on Instantaneous Velocity profiles
,”
J. Biomech.
,
40
(
12
), pp.
2752
2757
.10.1016/j.jbiomech.2007.01.012
You do not currently have access to this content.