Tibial component loosening is an important failure mode in unicompartmental knee arthroplasty (UKA) which may be due to the 6–8 mm of bone resection required. To address component loosening and fixation, a new early intervention (EI) design is proposed which reverses the traditional material scheme between femoral and tibial components. The EI design consists of a plastic inlay for the distal femur and a thin metal plate for the proximal tibia. With this reversed materials scheme, the EI design requires minimal tibial bone resection compared with traditional UKA. This study investigated, by means of finite element (FE) simulations, the advantages of a thin metal tibial component compared with traditional UKA tibial components, such as an all-plastic inlay or a metal-backed onlay. We hypothesized that an EI tibial component would produce comparable stress, strain, and strain energy density (SED) characteristics to an intact knee and more favorable values than UKA components, due primarily to the preservation of dense cancellous bone near the surface. Indeed, FE results showed that stresses in the supporting bone for an EI design were close to intact, while stresses, strains, and strain energy densities were reduced compared with an all-plastic UKA component. Analyzed parameters were similar for an EI and a metal-backed onlay, but the EI component had the advantage of minimal resection of the stiffest bone.

References

1.
Insall
,
J.
, and
Aglietti
,
P.
,
1980
, “
A Five to Seven-Year Follow-Up of Unicondylar Arthroplasty
,”
J. Bone Joint Surg. Am.
,
62
, pp.
1329
1337
.
2.
Swank
,
M.
,
Stulberg
,
S. D.
,
Jiganti
,
J.
, and
Machairas
,
S.
,
1993
, “
The Natural History of Unicompartmental Arthroplasty. An Eight-Year Follow-Up Study With Survivorship Analysis
,”
Clin. Orthop. Relat. Res.
,
286
, pp.
130
142
.10.1097/00003086-199301000-00020
3.
Cheng
,
T.
,
Guoyou
,
Z.
, and
Zhang
,
X.
,
2010
, “
Does Minimally Invasive Surgery Improve Short-Term Recovery in Total Knee Arthroplasty?
,”
Clin. Orthop. Relat. Res.
,
468
, pp.
1635
1648
.10.1007/s11999-010-1285-9
4.
McAllister
,
C.
, and
Stepanian
,
J.
,
2008
, “
The Impact of Minimally Invasive Surgical Techniques on Early Range of Motion after Primary Total Knee Arthroplasty
,”
J. Arthroplasty
,
23
(
1
), pp.
10
18
.10.1016/j.arth.2007.01.011
5.
Khanna
,
A.
,
Gougoulias
,
N.
,
Longo
U. G.
, and
Maffulli
,
N.
,
2009
, “
Minimally Invasive Total Knee Arthroplasty: A Systematic Review
,”
Orthop. Clin. North Am.
,
40
(
4
), pp.
479
489
.10.1016/j.ocl.2009.05.003
6.
Borus
,
T.
, and
Thornhill
,
T.
,
2008
, “
Unicompartmental Knee Arthroplasty
,”
J. Am. Acad. Orthop. Surg.
,
16
(
1
), pp.
9
18
.
7.
Tanavalee
,
A.
,
Choi
,
Y. J.
, and
Trai
,
A. J.
,
2005
, “
Unicondylar Knee Arthroplasty: Past and Present
,”
Orthopedics
,
28
, pp.
1423
–1433.
8.
Rho
,
J. Y.
,
Hobatho
,
M. C.
, and
Ashman
,
R. B.
,
1995
, “
Relations of Mechanical Properties to Density and CT Numbers in Human Bone
,”
Med. Eng. Phys.
,
17
(
5
), pp.
347
355
.10.1016/1350-4533(95)97314-F
9.
Gray
,
H.
,
Taddei
,
F.
,
Zavatsky
,
A.
,
Cristofolini
,
L.
, and
Gill
,
H.
,
2008
, “
Experimental Validation of a Finite Element Model of a Human Cadaveric Tibia
,”
ASME J. Biomech. Eng.
,
130
, p.
031016
.10.1115/1.2913335
10.
Zhang
,
Y.
,
Ahn
,
P. B.
,
Fitzpatrick
,
D. C.
,
Heiner
,
A.
,
Poggie
,
R. A.
, and
Brown
,
T. D.
,
1999
, “
Interfacial Frictional Behavior; Cancellous Bone, Cortical Bone, and a Novel Porous Tantalum Biomaterial
,”
J. Musculoskeletal Res.
,
3
(
4
), pp.
245
251
.10.1142/S0218957799000269
11.
Tandon
,
R.
,
1999
, “
Net Shaping of Co-Cr-Mo (F-75) via Metal Injection Molding
,”
Cobalt-Base Alloys for Biomedical Applications
,
J. A.
Disegi
,
R. L.
Kennedy
, and
R.
Pilliar
, eds.,
ASTM International
,
West Conshohocken, PA
, pp.
3
10
.
12.
Rapperport
,
D. J.
,
Carter
,
D. R.
, and
Schurman
,
D. J.
,
1987
, “
Contact Finite Element Stress Analysis of Porous Ingrowth Acetabular Cup Implantation, Ingrowth, and Loosening
,”
J. Orthop. Res.
,
5
(
4
), pp.
548
561
.10.1002/jor.1100050410
13.
Shanbhag
,
A. S.
,
Hasselman
,
C. T.
, and
Rubash
,
H. E.
,
1996
, “
Technique for Generating Submicrometer Ultra High Molecular Weight Polyethylene Particles
,”
J. Orthop. Res.
,
14
, pp.
1000
1004
.10.1002/jor.1100140622
14.
Kurtz
,
S. M.
,
Villarraga
,
M. L.
,
Herr
,
M. P.
,
Bergström
,
J. S.
, and
Rimnac
,
C. M.
,
2002
, “
Thermomechanical Behavior of Virgin and Highly Crosslinked Ultra-High Molecular Weight Polyethylene Used in Total Joint Replacements
,”
Biomaterials
,
23
(
17
), pp.
3681
3697
.10.1016/S0142-9612(02)00102-3
15.
Ho
,
S. P.
,
Carpick
,
R.
,
Boland
,
T.
, and
LaBerge
,
M.
,
2002
, “
Nanotribology of Cocr-UHMWPE TJR Prosthesis Using Atomic Force Microscopy
,”
Wear
,
253
(
11–12
), pp.
1145
1155
.10.1016/S0043-1648(02)00220-X
16.
Lakes
,
R. S.
,
2002
,
Composite Biomaterials. Biomaterials: Principles and Applications
,
CRC Press, LLC
,
Boca Raton, FL
, p.
84
.
17.
Orr
,
J. F.
,
Dunne
,
N. J.
, and
Quinn
,
Q. C.
,
2003
, “
Shrinkage Stresses in Bone Cement
,”
Biomaterials
,
24
(
17
), pp.
2933
2940
.10.1016/S0142-9612(03)00055-3
18.
Mündermann
,
A.
,
Dyrby
,
C. O.
,
D’Lima
,
D. D.
,
Colwell
,
C. W.
, Jr.
, and
Andriacchi
,
T. P.
,
2008
, “
in vivo Knee Loading Characteristics During Activities of Daily Living as Measured by an Instrumented Total Knee Replacement
,”
J. Orthop. Res.
,
26
(
9
), pp.
1167
1172
.10.1002/jor.20655
19.
Argenson
,
J. A.
,
Komistek
,
R. D.
,
Aubaniac
,
J.
,
Dennis
,
D. A.
,
Northcut
,
E.
,
Anderson
,
D.
, and
Agostini
,
S.
,
2002
, “
In Vivo Determination of Knee Kinematics for Subjects Implanted With a Unicompartmental Arthroplasty
,”
J. Arthroplasty
,
17
(
8
), pp.
1049
1054
.10.1054/arth.2002.34527
20.
Banks
,
S.
,
Fregly
,
B.
,
Boniforti
,
F.
,
Reinschmidt
,
C.
, and
Romagnoli
,
S.
,
2005
, “
Comparing In Vivo Kinematics of Unicondylar and Bi-Unicondylar Knee Replacements
,”
Knee
,
13
, pp.
551
556
.10.1007/s00167-004-0565-x
21.
D’Lima
,
D. D.
,
Patil
,
S.
,
Steklov
,
N.
, and
Colwell
,
C. W.
,
2011
, “
The 2011 ABJS Nicolas Andry Award: 'Lab'-In-A-Knee: in vivo Knee Forces, Kinematics, and Contact Analysis
,”
Clin. Orthop. Relat. Res.
,
469
(
10
), pp.
2953
2970
.10.1007/s11999-011-1916-9
22.
Fukubayashi
,
T.
, and
Kurosawa
,
H.
,
1980
, “
The Contact Area and Distribution Pattern of the Knee
,”
Acta Orthop. Scand.
,
51
, pp.
871
879
.10.3109/17453678008990887
23.
Bell
,
C.
,
Arno
,
S.
,
Hadley
,
S.
,
Campbell
,
K.
,
Beltran
L.
,
Recht
M.
,
Sherman
O.
,
Walker
P.
,
2012
, “
Relative Contacts Between the Medial Meniscus and Exposed Cartilage in the Knee
,” 58th Annual Orthopaedic Research Society.
24.
Taylor
,
M.
,
Tanner
,
K. E.
, and
Freeman
,
M. A. R.
,
1998
, “
Finite Element Analysis of the Implanted Proximal Tibia: A Relationship Between the Initial Cancellous Bone Stresses and Implant Migration
,”
J. Biomech.
,
31
, pp.
303
310
.10.1016/S0021-9290(98)00022-0
25.
Huiskes
,
R.
,
Weinans
,
H.
,
Grootenboer
,
H. J.
,
Dalstra
,
M.
,
Fudala
,
B.
, and
Sloof
,
T. J.
,
1987
, “
Adaptive Bone-Remodeling Theory Applied to Prosthetic-Design Analysis
,”
J. Biomech.
,
20
(
11–12
), pp.
1135
1150
.10.1016/0021-9290(87)90030-3
26.
Simpson
,
D.
,
Kendrick
,
B.
,
Dodd
,
C.
,
Price
,
A.
,
Gill
,
H.
, and
Murray
,
D.
,
2010
, “
Load Transfer in the Proximal Tibia Following Implantation With a Unicompartmental Knee Replacement: A Static Snapshot
,”
Proc. Inst. Mech. Eng., Part H
,
225
, pp.
521
529
.10.1177/2041303310395074
27.
Morgan
,
E. F.
, and
Keaveny
,
T. M.
,
2001
, “
Dependence of Yield Strain on Human Trabecular Bone on Anatomic Site
,”
J. Biomech.
,
34
, pp.
569
577
.10.1016/S0021-9290(01)00011-2
28.
Minas
,
R. J.
,
Day
,
J. B.
, and
Hardinge
,
K.
,
1982
, “
Kinesiologic and Biomechanical Assessment of the Charnley ‘Load Angle Inlay’ Knee Prosthesis
,”
Eng. Med.
,
11
(
1
), pp.
25
32
.10.1243/EMED_JOUR_1982_011_006_02
29.
Arastu
,
M.
,
Vijayaraghavan
,
J.
,
Chissell
,
H.
,
Hull
,
J.
,
Newman
,
J.
, and
Robison
,
J.
,
2009
, “
Early Failure of a Mobile Bearing Unicompartmental Knee Replacement
,”
Knee Surg. Sports Traumatol. Arthrosc.
,
17
(
10
), pp.
1178
1183
.10.1007/s00167-009-0779-z
30.
Lisowski
L. A.
,
van den Bekerom
M. P. J.
,
Pilot
P.
,
van Dijk
C. N.
,
Lisowski
A. E.
,
2011
, “Oxford Phase 3 Unicompartmental Knee Arthroplasty: Medium-Term Results of a Minimally Invasive Surgical Procedure,”
Knee Surg Sports Traumatol Arthrosc
,
19
(2): 277–84.10.1007/s00167-010-1213-2
31.
Small
,
S. R.
,
Berend
,
M. E.
,
Ritter
,
M. D.
,
Buckley
,
C. A.
, and
Rogge
,
R. D.
,
2011
, “
Metal Backing Significantly Decreases Tibial Strains in a Medial Unicompartmental Knee Arthroplasty Model
,”
J. Arthroplasty
,
26
(
5
), pp.
777
782
.10.1016/j.arth.2010.07.021
32.
Scott
,
C. E. H.
,
Eaton
,
M. J.
,
Nutton
,
R. W.
,
Wade
,
F.
,
Pankaj
,
P.
, and
Evans
,
S.
,
2013
, “
Proximal Tibial Strain in Medial Unicompartmental Knee Replacements
,”
Bone Joint J.
,
95B
, pp.
1339
1347
.10.1302/0301-620X.95B10.31644
33.
Saenz
,
C. L.
,
McGrath
,
M. S.
,
Marker
,
D. R.
,
Seyler
,
T. M.
,
Mont
,
M. A.
, and
Bonutti
,
P. M.
,
2010
, “
Early Failure of a Unicompartmental Knee Arthroplasty Design With an All-Polyethylene Tibial Component
,”
Knee
,
17
, pp.
53
56
.10.1016/j.knee.2009.05.007
34.
Gladnick
,
B.
,
Nam
,
D.
,
Khamaisy
,
S.
,
Paul
,
S.
, and
Pearle
,
A.
, “
Inlay Versus Onlay Tibial Implants in Robotic Unicondylar Knee Arthroplasty
,” Annual Congress of the International Society for Technology in Arthroplasty, Palm Beach, FL, Oct. 16–19.
35.
Thompson
,
M. T.
,
Conditt
,
M. A.
,
Otto
,
J. K.
, and
Redish
,
M.
,
2010
, “
The Importance of Good Cement Mantle With an All-Poly Inlay UKA
Transactions of the 56th Annual Meeting—Orthopaedic Research Society
, Orthopaedic Research Society.
36.
Hvid
,
I.
, and
Hansen
,
S. L.
,
1985
, “
Trabecular Bone Strength Patterns at the Proximal Tibial Epiphysis
,”
J. Orthop. Res.
,
3
(
4
), pp.
464
472
.10.1002/jor.1100030409
37.
Hvid
,
I.
,
1988
, “
Trabecular Bone Strength at the Knee
,”
Clin. Orthop. Relat. Res.
,
227
, pp.
210
221
.10.1097/00003086-198802000-00025
38.
Wong
,
N.
,
Wei
,
C. S.
,
Gautam
,
P.
, and
Walker
,
P. S.
,
2012
, “
Multi-Planar Visualization of Tibial Bone Density Distribution From a Tibial CAT Scan Dataset
,”
Orthopedics Research Society Annual Meeting
, February, 2012.
39.
Arno
,
S.
,
Maffei
,
D.
,
Walker
,
P. S.
,
Schwarzkopf
,
R.
,
Desai
,
P.
, and
Steiner
,
G.
,
2011
, “
Retrospective Analysis of Total Knee Arthroplasty Cases for Visual, Histological and Clinical Eligibility of Unicompartmental Knee Arthroplasties
,”
J. Arthroplasty
,
26
(
8
), pp.
1396
1403
.10.1016/j.arth.2010.12.023
You do not currently have access to this content.