Patient compliance is important when assessing movement, particularly in a free-living environment when patients are asked to don their own accelerometers. Reducing the number of accelerometers could increase patient compliance. The aims of this study were (1) to determine and compare the validity of different accelerometer combinations and placements for a previously developed posture and dynamic movement identification algorithm. Custom-built activity monitors, each containing one tri-axial accelerometer, were placed on the ankles, right thigh, and waist of 12 healthy adults. Subjects performed a protocol in the laboratory including static orientations of standing, sitting, and lying down, and dynamic movements of walking, jogging, transitions between postures, and fidgeting to simulate free-living activity. When only one accelerometer was used, the thigh was found to be the optimal placement to identify both movement and static postures, with a misclassification error of 10%, and demonstrated the greatest accuracy for walking/fidgeting and jogging classification with sensitivities and positive predictive value (PPVs) greater than 93%. When two accelerometers were used, the waist-thigh accelerometers identified movement and static postures with greater accuracy than the thigh-ankle accelerometers (with a misclassification error of 11% compared to 17%). However, the thigh-ankle accelerometers demonstrated the greatest accuracy for walking/ fidgeting and jogging classification with sensitivities and PPVs greater than 93%. Movement can be accurately classified in healthy adults using tri-axial accelerometers placed on one or two of the following sites: waist, thigh, or ankle. Posture and transitions require an accelerometer placed on the waist and an accelerometer placed on the thigh.

References

References
1.
Troiano
,
R. P.
,
Berrigan
,
D.
,
Dodd
,
K. W.
,
Mâsse
,
L. C.
,
Tilert
,
T.
, and
Mcdowell
,
M.
,
2008
, “
Physical Activity in the United States Measured by Accelerometer
,”
Med. Sci. Sports Exercise
,
40
(
1
), pp.
181
188
.10.1249/mss.0b013e31815a51b3
2.
Matthews
,
C. E.
,
Hagströmer
,
M.
,
Pober
,
D. M.
, and
Bowles
,
H. R.
,
2012
, “
Best Practices for Using Physical Activity Monitors in Population-Based Research
,”
Med. Sci. Sports Exercise
,
44
(
1
), pp.
S68
S76
.10.1249/MSS.0b013e3182399e5b
3.
Hagstromer
,
M.
,
Oja
,
P.
, and
Sjostrom
,
M.
,
2007
, “
Physical Activity and Inactivity in an Adult Population Assessed by Accelerometry
,”
Med. Sci. Sports Exercise
,
39
(
9
), pp.
1502
1508
.10.1249/mss.0b013e3180a76de5
4.
Mattocks
,
C.
,
Ness
,
A.
,
Leary
,
S.
,
Tilling
,
K.
,
Blair
,
S.
,
Shield
,
J.
,
Deere
,
K.
,
Saunders
,
J.
,
Kirkby
,
J.
, and
Smith
,
G.
,
2008
, “
Use of Accelerometers in a Large Field-Based Study of Children: Protocols, Design Issues, and Effects on Precision
,”
J. Phys. Activity Health
,
5
, pp.
S98
S111
.
5.
Atallah
,
L.
,
Lo
,
B.
,
King
,
R.
, and
Guang-Zhong
,
Y.
,
2011
, “
Sensor Positioning for Activity Recognition Using Wearable Accelerometers
,”
IEEE Trans. Biomed. Circuits Syst.
,
5
(
4
), pp.
320
329
.10.1109/TBCAS.2011.2160540
6.
Allen
,
F. R.
,
Ambikairajah
,
E.
,
Lovell
,
N. H.
, and
Celler
,
B. G.
,
2006
, “
Classification of a Known Sequence of Motions and Postures From Accelerometry Data Using Adapted Gaussian Mixture Models
,”
Physiol. Meas.
,
27
(
10
), pp.
935
951
.10.1088/0967-3334/27/10/001
7.
Godfrey
,
A.
,
Conway
,
R.
,
Meagher
,
D.
, and
O'Laighin
,
G.
,
2008
, “
Direct Measurement of Human Movement by Accelerometry
,”
Med. Eng. Phys.
,
30
(
10
), pp.
1364
1386
.10.1016/j.medengphy.2008.09.005
8.
Yang
,
C. C.
, and
Hsu
,
Y. L.
,
2010
, “
A Review of Accelerometry-Based Wearable Motion Detectors for Physical Activity Monitoring
,”
Sensors (Basel)
,
10
(
8
), pp.
7772
7788
.10.3390/s100807772
9.
Bussmann
,
J. B.
,
Martens
,
W. L.
,
Tulen
,
J. H.
,
Schasfoort
,
F. C.
,
Van Den Berg-Emons
,
H. J.
, and
Stam
,
H. J.
,
2001
, “
Measuring Daily Behavior Using Ambulatory Accelerometry: The Activity Monitor
,”
Behav. Res. Methods Instrum. Comput.
,
33
(
3
), pp.
349
356
.10.3758/BF03195388
10.
Bao
,
L.
, and
Intille
,
S.
,
2004
, “
Activity Recognition From User-Annotated Acceleration Data
,”
IEEE Pervasive Comput.
,
3001
, pp.
1
17
.10.1007/b96922
11.
Veltink
,
P. H.
,
Bussmann
,
H. B.
,
De Vries
,
W.
,
Martens
,
W. L.
, and
Van Lummel
,
R. C.
,
1996
, “
Detection of Static and Dynamic Activities Using Uniaxial Accelerometers
,”
IEEE Trans. Rehabil. Eng.
,
4
(
4
), pp.
375
385
.10.1109/86.547939
12.
Aminian
,
K.
,
Robert
,
P.
,
Buchser
,
E. E.
,
Rutschmann
,
B.
,
Hayoz
,
D.
, and
Depairon
,
M.
,
1999
, “
Physical Activity Monitoring Based on Accelerometry: Validation and Comparison With Video Observation
,”
Med. Biol. Eng. Comput.
,
37
(
3
), pp.
304
308
.10.1007/BF02513304
13.
Foerster
,
F.
,
Smeja
,
M.
, and
Fahrenberg
,
J.
,
1999
, “
Detection of Posture and Motion by Accelerometry: A Validation Study in Ambulatory Monitoring
,”
Comput. Human Behav.
,
15
(
5
), pp.
571
583
.10.1016/S0747-5632(99)00037-0
14.
Grant
,
P. M.
,
Ryan
,
C. G.
,
Tigbe
,
W. W.
, and
Granat
,
M. H.
,
2006
, “
The Validation of a Novel Activity Monitor in the Measurement of Posture and Motion During Everyday Activities
,”
Br. J. Sports Med.
,
40
(
12
), pp.
992
997
.10.1136/bjsm.2006.030262
15.
Karantonis
,
D. M.
,
Narayanan
,
M. R.
,
Mathie
,
M.
,
Lovell
,
N. H.
, and
Celler
,
B. G.
,
2006
, “
Implementation of a Real-Time Human Movement Classifier Using a Triaxial Accelerometer for Ambulatory Monitoring
,”
IEEE Trans. Inf. Technol. Biomed.
,
10
(
1
), pp.
156
167
.10.1109/TITB.2005.856864
16.
Dijkstra
,
B.
,
Kamsma
,
Y.
, and
Zijlstra
,
W.
,
2010
, “
Detection of Gait and Postures Using a Miniaturised Triaxial Accelerometer-Based System: Accuracy in Community-Dwelling Older Adults
,”
Age Ageing
,
39
(
2
), pp.
259
262
.10.1093/ageing/afp249
17.
Rodriguez-Martin
,
D.
,
Samà
,
A.
,
Perez-Lopez
,
C.
,
Català
,
A.
,
Cabestany
,
J.
, and
Rodriguez-Molinero
,
A.
,
2013
, “
Svm-Based Posture Identification With a Single Waist-Located Triaxial Accelerometer
,”
Expert Syst. Appl.
,
40
(
18
), pp.
7203
7211
.10.1016/j.eswa.2013.07.028
18.
Salarian
,
A.
,
Russmann
,
H.
,
Vingerhoets
,
F. J.
,
Burkhard
,
P. R.
, and
Aminian
,
K.
,
2007
, “
Ambulatory Monitoring of Physical Activities in Patients With Parkinson's Disease
,”
IEEE Trans. Biomed. Eng.
,
54
(
12
), pp.
2296
2299
.10.1109/TBME.2007.896591
19.
Morlock
,
M.
,
Schneider
,
E.
,
Bluhm
,
A.
,
Vollmer
,
M.
,
Bergmann
,
G.
,
Muller
, V
.
, and
Honl
,
M.
,
2001
, “
Duration and Frequency of Every Day Activities in Total Hip Patients
,”
J. Biomech.
,
34
(
7
), pp.
873
881
.10.1016/S0021-9290(01)00035-5
20.
Farr
,
J. N.
,
Going
,
S. B.
,
Lohman
,
T. G.
,
Rankin
,
L.
,
Kasle
,
S.
,
Cornett
,
M.
, and
Cussler
,
E.
,
2008
, “
Physical Activity Levels in Patients With Early Knee Osteoarthritis Measured by Accelerometry
,”
Arthritis Rheum.
,
59
(
9
), pp.
1229
1236
.10.1002/art.24007
21.
Oliver
,
M.
,
Schofield
,
G. M.
,
Badland
,
H. M.
, and
Shepherd
,
J.
,
2010
, “
Utility of Accelerometer Thresholds for Classifying Sitting in Office Workers
,”
Prev. Med.
,
51
(
5
), pp.
357
360
.10.1016/j.ypmed.2010.08.010
22.
Kang
,
D. W.
,
Choi
,
J. S.
,
Lee
,
J. W.
,
Chung
,
S. C.
,
Park
,
S. J.
, and
Tack
,
G. R.
,
2010
, “
Real-Time Elderly Activity Monitoring System Based on a Tri-Axial Accelerometer
,”
Disabil. Rehabil. Assist Technol.
,
5
(
4
), pp.
247
253
.10.3109/17483101003718112
23.
Najafi
,
B.
,
Aminian
,
K.
,
Paraschiv-Ionescu
,
A.
,
Loew
,
F.
,
Bula
,
C. J.
, and
Robert
,
P.
,
2003
, “
Ambulatory System for Human Motion Analysis Using a Kinematic Sensor: Monitoring of Daily Physical Activity in the Elderly
,”
IEEE Trans. Biomed. Eng.
,
50
(
6
), pp.
711
723
.10.1109/TBME.2003.812189
24.
Bouten
,
C. V.
,
Koekkoek
,
K. T.
,
Verduin
,
M.
,
Kodde
,
R.
, and
Janssen
,
J. D.
,
1997
, “
A Triaxial Accelerometer and Portable Data Processing Unit for the Assessment of Daily Physical Activity
,”
IEEE Trans. Biomed. Eng.
,
44
(
3
), pp.
136
147
.10.1109/10.554760
25.
Preece
,
S. J.
,
Goulermas
,
J. Y.
,
Kenney
,
L. P.
, and
Howard
,
D.
,
2009
, “
A Comparison of Feature Extraction Methods for the Classification of Dynamic Activities From Accelerometer Data
,”
IEEE Trans. Biomed. Eng.
,
56
(
3
), pp.
871
879
.10.1109/TBME.2008.2006190
26.
Gjoreski
,
H.
,
Lustrek
,
M.
, and
Gams
,
M.
,
2011
, “
Accelerometer Placement for Posture Recognition and Fall Detection
,”
7th International Conference on Intelligent Environments
, IEEE, Nottingham, UK, pp.
47
54
.
27.
Lugade
,
V.
,
Fortune
,
E.
,
Morrow
,
M.
, and
Kaufman
,
K.
,
2013
, “
Validity of Using Tri-Axial Accelerometers to Measure Human Movement—Part I: Posture and Movement Detection
,”
Med. Eng. Phys.
(in press).10.1016/j.medengphy.2013.06.005
28.
Bidargaddi
,
N.
,
Sarela
,
A.
,
Klingbeil
,
L.
, and
Karunanithi
,
M.
,
2007
, “
Detecting Walking Activity in Cardiac Rehabilitation by Using Accelerometer
,”
3rd International Conference on Intelligent Sensors, Sensor Networks and Information
, IEEE, Melbourne, Australia, pp.
555
560
.
29.
Mathie
,
M. J.
,
Coster
,
A. C.
,
Lovell
,
N. H.
, and
Celler
,
B. G.
,
2003
, “
Detection of Daily Physical Activities Using a Triaxial Accelerometer
,”
Med. Biol. Eng. Comput.
,
41
(
3
), pp.
296
301
.10.1007/BF02348434
30.
Lyons
,
G. M.
,
Culhane
,
K. M.
,
Hilton
,
D.
,
Grace
,
P. A.
, and
Lyons
,
D.
,
2005
, “
A Description of an Accelerometer-Based Mobility Monitoring Technique
,”
Med. Eng. Phys.
,
27
(
6
), pp.
497
504
.10.1016/j.medengphy.2004.11.006
31.
Hammersley
,
M.
,
1987
, “
Some Notes on the Terms ‘Validity’ and ‘Reliability'[1]
,”
Br. J. Educ. Res.
,
13
(
1
), pp.
73
82
.10.1080/0141192870130107
32.
Landis
,
J. R.
, and
Koch
,
G. G.
,
1977
, “
The Measurement of Observer Agreement for Categorical Data
,”
Biometrics
,
33
, pp.
159
174
.10.2307/2529310
33.
Ridgers
,
N. D.
,
Salmon
,
J.
,
Ridley
,
K.
,
O'Connell
,
E.
,
Arundell
,
L.
, and
Timperio
,
A.
,
2012
, “
Agreement between Activpal and Actigraph for Assessing Children's Sedentary Time
,”
Int. J. Behav. Nutr. Phys. Act.
,
9
:
15
, pp.
1
–8.10.1186/1479-5868-9-15
34.
Bland
,
J. M.
, and
Altman
,
D. G.
,
1999
, “
Measuring Agreement in Method Comparison Studies
,”
Stat. Methods Med. Res.
,
8
(
2
), pp.
135
160
.10.1191/096228099673819272
35.
Sirard
,
J. R.
, and
Slater
,
M. E.
,
2009
, “
Compliance With Wearing Physical Activity Accelerometers in High School Students
,”
J. Phys. Act. Health
,
6
(
1
), pp.
S148
S155
.
36.
Tapia
,
E. M.
,
Intille
,
S. S.
,
Haskell
,
W.
,
Larson
,
K.
,
Wright
,
J.
,
King
,
A.
, and
Friedman
,
R.
,
2007
, “
Real-Time Recognition of Physical Activities and Their Intensities Using Wireless Accelerometers and a Heart Rate Monitor
,”
11th IEEE International Symposium on Wearable Computers
, pp.
37
40
.
37.
Godfrey
,
A.
,
Culhane
,
K. M.
, and
Lyons
,
G. M.
,
2007
, “
Comparison of the Performance of the Activpal Professional Physical Activity Logger to a Discrete Accelerometer-Based Activity Monitor
,”
Med. Eng. Phys.
,
29
(
8
), pp.
930
934
.10.1016/j.medengphy.2006.10.001
You do not currently have access to this content.