Periprosthetic bone loss following total hip arthroplasty (THA) is a serious concern leading to the premature failure of prosthetic implant. Therefore, investigating bone remodeling in response to hip arthroplasty is of paramount for the purpose of designing long lasting prostheses. In this study, a thermodynamic-based theory, which considers the coupling between the mechanical loading and biochemical affinity as stimulus for bone formation and resorption, was used to simulate the femoral density change in response to THA. The results of the numerical simulations using 3D finite element analysis revealed that in Gruen zone 7, after remarkable postoperative bone loss, the bone density started recovering and got stabilized after 9% increase. The most significant periprosthetic bone loss was found in Gruen zone 7 (−17.93%) followed by zone 1 (−13.77%). Conversely, in zone 4, bone densification was observed (+4.63%). The results have also shown that the bone density loss in the posterior region of the proximal metaphysis was greater than that in the anterior side. This study provided a quantitative figure for monitoring the distribution variation of density throughout the femoral bone. The predicted bone density distribution before and after THA agree well with the bone morphology and previous results from the literature.

References

References
1.
Cristofolini
,
L.
,
1997
, “
A Critical Analysis of Stress Shielding Evaluation of Hip Prostheses
,”
Crit. Rev. Biomed. Eng.
,
25
(
4–5
), pp.
409
483
.10.1615/CritRevBiomedEng.v25.i4-5.30
2.
Kroger
,
H.
,
Venesmaa
,
P.
,
Jurvelin
,
J.
,
Miettinen
,
H.
,
Suomalainen
,
O.
, and
Alhava
,
E.
,
1998
, “
Bone Density at the Proximal Femur After Total Hip Arthroplasty
,”
Clin. Orthop. Relat. Res.
,
352
, pp.
66
74
.
3.
Bougherara
,
H.
,
Bureau
,
M. N.
, and
Yahia
,
L.
,
2010
, “
Bone Remodeling in a New Biomimetic Polymer-Composite Hip Stem
,”
J. Biomed. Mater. Res. A
,
92
(
1
), pp.
164
174
.10.1002/jbm.a.32346
4.
Huiskes
,
R.
,
Weinans
,
H.
,
Grootenboer
,
H. J.
,
Dalstra
,
M.
,
Fudala
,
B.
, and
Slooff
,
T. J.
,
1987
, “
Adaptive Bone-Remodeling Theory Applied to Prosthetic-Design Analysis
,”
J. Biomech.
,
20
(
11–12
), pp.
1135
1150
.10.1016/0021-9290(87)90030-3
5.
Huiskes
,
R.
,
Weinans
,
H.
, and
van Rietbergen
,
B.
,
1992
, “
The Relationship Between Stress Shielding and Bone Resorption Around Total Hip Stem and the Effects of Flexible Materials
,”
Clin. Orthop. Relat. Res.
,
274
pp.
124
134
.
6.
Lengsfeld
,
M.
,
Burchard
,
R.
,
Gunther
,
D.
,
Pressel
,
T.
,
Schmitt
,
J.
,
Leppek
,
R.
, and
Griss
,
P.
,
2005
, “
Femoral Strain Changes After Total Hip Arthroplasty—Patient-Specific Finite Element Analyses 12 Years After Operation
,”
Med. Eng. Phys.
,
27
, pp.
649
654
.10.1016/j.medengphy.2004.12.016
7.
Turner
,
A. W.
,
Gillies
,
R. M.
,
Sekel
,
R.
,
Morris
,
P.
,
Bruce
,
W.
, and
Walsh
,
W. R.
,
2005
, “
Computational Bone Remodelling Simulations and Comparisons With DEXA Results
,”
J. Orthop. Res.
,
23
(
4
), pp.
705
712
.10.1016/j.orthres.2005.02.002
8.
Carter
,
D. R.
, and
Beaupre
,
G. S.
,
2001
,
Skeletal Function and Form: Mechanobiology of Skeletal Development, Aging and Regeneration
,
Cambridge University Press
,
Cambridge, United Kingdom
.
9.
Cowin
,
S.
, and
Hegedus
,
D. H.
,
1976
, “
Bone Remodeling I: Theory of Adaptive Elasticity
,”
J. Elasticity
,
6
, pp.
313
326
.10.1007/BF00041724
10.
Roesler
,
H.
,
1987
, “
The History of Some Fundamental Concepts in Bone Biomechanics
,”
J. Biomech.
,
20
(
11–12
), pp.
1025
1034
.10.1016/0021-9290(87)90020-0
11.
Wolff
,
J.
,
1892
,
das Gesetz der Transformation der Knochen
, Kirschwald, Springer, Berlin.
12.
Callaghan
,
J. J.
,
Dysart
,
S. H.
,
Savory
,
C. F.
, and
Hopkinson
,
W. J.
,
1990
, “
Assessing the Results of Hip Replacement. A Comparison of Five Different Rating Systems
,”
J. Bone Jt. Surg. Br. B
,
72
(
6
), pp.
1008
1009
.
13.
Hirotsugu
,
O.
,
Yoshinorik
,
K.
,
Yukihidem
,
M.
,
Hidetomi
,
T.
, and
Yoshiki
,
Y.
,
2000
, “
Outcome of Second Revision THR
,”
Jpn. J. Rheum. Jt. Surg.
,
18
, pp.
199
204
.
14.
Bobyn
,
J. D.
,
Glassman
,
A. H.
,
Goto
,
H.
,
Krygier
,
J. J.
,
Miller
,
J. E.
, and
Brooks
,
C. E.
,
1990
, “
The Effect of Stem Stiffness on Femoral Bone Resorption After Canine Porous-Coated Total Hip Arthroplasty
,”
Clin. Orthop. Relat. Res.
,
261
, pp.
196
213
.
15.
Sumner
,
D. R.
, and
Galante
,
J. O.
,
1992
, “
Determinants of Stress Shielding: Design Versus Materials Versus Interface
,”
Clin. Orthop. Relat. Res.
,
274
, pp.
202
212
.
16.
Engh
,
C. A.
,
McGovern
,
T. F.
,
Bobyn
,
J. D.
, and
Harris
,
W. H.
,
1992
, “
A Quantitative Evaluation of Periprosthetic Bone-Remodeling After Cementless Total Hip Arthroplasty
,”
J. Bone Jt. Surg. Am.
,
74
(
7
), pp.
1009
1020
.
17.
Engh
,
C. A.
,
Hooten
,
J. P.
,
Zettl-Schaffer
,
K. F.
,
Ghaffarpour
,
M.
,
McGovern
,
T. F.
,
Macalino
,
G. E.
, and
Zicat
,
B. A.
,
1994
, “
Porous-Coated Total Hip Replacement
,”
Clin. Orthop. Relat. Res.
,
298
, pp.
89
96
.
18.
Li
,
M. G.
,
Rohrl
,
S. M.
,
Wood
,
D. J.
, and
Nivbrant
,
B.
,
2007
, “
Periprosthetic Changes in Bone Mineral Density in 5 Stem Designs 5 Years After Cemented Total Hip Arthroplasty, No Relation to Stem Migration
,”
J. Arthroplasty
,
22
(
5
), pp.
689
691
.10.1016/j.arth.2006.05.035
19.
Sano
,
K.
,
Ito
,
K.
, and
Yamamoto
,
K.
,
2008
, “
Changes of Bone Mineral Density After Cementless Total Hip Arthroplasty With Two Different Stems
,”
Int. Orthop.
,
32
(
2
), pp.
167
172
.10.1007/s00264-006-0298-1
20.
Sluimer
,
J. C.
,
Hoefnagels
,
N. H.
,
Emans
,
P. J.
,
Kuijer
,
R.
, and
Geesink
,
R. G.
,
2006
, “
Comparison of Two Hydroxyapatite-Coated Femoral Stems: Clinical, Functional, and Bone Densitometry Evaluation of Patients Randomized to a Regular or Modified Hydroxyapatite-Coated Stem Aimed at Proximal Fixation
,”
J. Arthroplasty
,
21
(
3
), pp.
344
352
.10.1016/j.arth.2005.06.015
21.
Stukenborg-Colsman
,
C. M.
,
von der Haar-Tran
,
A.
,
Windhagen
,
H.
,
Bouguecha
,
A.
,
Wefstaedt
,
P.
, and
Lerch
,
M.
,
2012
, “
Bone Remodelling Around a Cementless Straight THA Stem: A Prospective Dual-Energy X-Ray Absorptiometry Study
,”
Hip Int.
,
22
(
2
), pp.
166
171
.10.5301/HIP.2012.9227
22.
Beaupre
,
G. S.
,
Orr
,
T. E.
, and
Carter
,
D. R.
,
1990
, “
An Approach for Time-Dependent Bone Modeling and Remodeling-Application: A Preliminary Remodeling Simulation
,”
J. Orthop. Res.
,
8
(
5
), pp.
662
670
.10.1002/jor.1100080507
23.
Frost
,
H. M.
,
1998
, “
Changing Concepts in Skeletal Physiology: Wolff's Law, the Mechanostat and the Utah Paradigm
,”
Am. J. Hum. Biol.
,
10
, pp.
599
605
.10.1002/(SICI)1520-6300(1998)10:5<599::AID-AJHB6>3.0.CO;2-9
24.
Garcia-Aznar
,
J. M.
,
Rueberg
,
T.
, and
Doblare
,
M.
,
2005
, “
A Bone Remodelling Model Coupling Microdamage Growth and Repair by 3D BMU-Activity
,”
Biomech. Model Mechanobiol.
,
4
(
2–3
), pp.
147
167
.10.1007/s10237-005-0067-x
25.
Huiskes
,
R.
,
Ruimerman
,
R.
,
van Lenthe
,
G. H.
, and
Janssen
,
J. D.
,
2000
, “
Effects of Mechanical Forces on Maintenance and Adaptation of Form in Trabecular Bone
,”
Nature
,
405
(
6787
), pp.
704
706
.10.1038/35015116
26.
Kuhl
,
E.
, and
Balle
,
F.
,
2005
, “
Computational Modeling of Hip Replacement Surgery: Total Hip Replacement vs Hip Resurfacing
,”
Technische mechanik
,
25
(
2
), pp.
107
114
.
27.
Levenston
,
M. E.
, and
Carter
,
D. R.
,
1998
, “
An Energy Dissipation-Based Model for Damage Stimulated Bone Adaptation
,”
J. Biomech.
,
31
(
7
), pp.
579
586
.10.1016/S0021-9290(98)00039-6
28.
Martin
,
R. B.
,
2007
, “
Targeted Bone Remodeling Involves BMU Steering as Well as Activation
,”
Bone
,
40
, pp.
1574
1580
.10.1016/j.bone.2007.02.023
29.
Prendergast
,
P. J.
, and
Taylor
,
D.
,
1994
, “
Prediction of Bone Adaptation Using Damage Accumulation
,”
J. Biomech.
,
27
(
8
), pp.
1067
1076
.10.1016/0021-9290(94)90223-2
30.
Scheiner
,
S.
,
Pivonka
,
P.
, and
Hellmich
,
C.
,
2013
, “
Coupling Systems Biology With Multiscale Mechanics, for Computer Simulations of Bone Remodeling
,”
Comput. Method Appl. Mech. Eng.
,
254
, pp.
181
196
.10.1016/j.cma.2012.10.015
31.
Bougherara
,
H.
,
Klika
,
V.
,
Marsik
,
F.
,
Marik
,
I. A.
, and
Yahia
,
L.
,
2010
, “
New Predictive Model for Monitoring Bone Remodeling
,”
J. Biomed. Mater. Res. A
,
95
(
1
), pp.
9
24
.10.1002/jbm.a.32679
32.
Hernandez
,
C. J.
,
Beaupre
,
G. S.
, and
Carter
,
D. R.
,
2000
, “
A Model of Mechano-Biologic and Metabolic Influences Bone Adaptation
,”
J. Rehabil. Res. Dev.
,
37
, pp.
235
244
.
33.
Hernandez
,
C. J.
,
Beaupre
,
G. S.
,
Keller
,
T. S.
, and
Carter
,
D. R.
,
2001
, “
The Influence of Bone Volume Fraction and Ash Fraction on Bone Strength and Modulus
,”
Bone
,
29
(
1
), pp.
74
78
.10.1016/S8756-3282(01)00467-7
34.
Ruimerman
,
R.
,
Huiskes
,
R.
,
van Lenthe
,
G. H.
, and
Janssen
,
J. D.
,
2001
, “
A Computer-Simulation Model Relating Bone-Cell Metabolism to Mechanical Adaptation of Trabecular Architecture
,”
Comput. Methods Biomech. Biomed. Eng.
,
4
(
5
), pp.
433
448
.10.1080/10255840108908019
35.
Kroll
,
M. H.
,
2000
, “
Parathyroid Hormone Temporal Effects on Bone Formation and Resorption
,”
Bull. Math. Biol.
,
62
, pp.
163
188
.10.1006/bulm.1999.0146
36.
Rattanakul
,
C.
,
Lenbury
,
Y.
,
Krishnamara
,
N.
, and
Wollkind
,
D. J.
,
2003
, “
Modeling of Bone Formation and Resorption Mediated by Parathyroid Hormone: Response to Estrogen/PTH therapy
,”
Biosystems
,
70
, pp.
55
72
.10.1016/S0303-2647(03)00040-6
37.
Komarova
,
S. V.
,
Smith
,
R. J.
,
Dixon
,
S. J.
,
Sims
,
S. M.
, and
Wahl
,
L. M.
,
2003
, “
Mathematical Model Predicts a Critical Role for Osteoclast Autocrine Regulation in the Control of Bone Remodeling
,”
Bone
,
33
, pp.
206
215
.10.1016/S8756-3282(03)00157-1
38.
Lemaire
,
V.
,
Tobin
,
F. L.
,
Greller
,
L. D.
,
Cho
,
C. R.
, and
Suva
,
L. J.
,
2004
, “
Modeling the Interactions Between Osteoblast and Osteoclast Activities in Bone Remodeling
,”
J. Theor. Biol.
,
229
, pp.
293
309
.10.1016/j.jtbi.2004.03.023
39.
Klika
,
V.
, and
Marsik
,
F.
,
2010
, “
A Thermodynamic Model of Bone Remodelling: The Influence of Dynamic Loading Together With Biochemical Control
,”
J. Musculoskeletal Neuronal Interact.
,
10
(
3
), pp.
220
230
.
40.
Rouhi
,
G.
,
Epstein
,
M.
,
Sudak
,
L.
, and
Herzog
,
W.
,
2007
, “
Modeling Bone Resorption Using Mixture Theory With Chemical Reactions
,”
J. Mech. Mater. Struct.
,
2
, pp.
1141
1155
.10.2140/jomms.2007.2.1141
41.
Jaworski
,
Z. F.
, and
Uhthoff
,
H. K.
,
1986
, “
Reversibility of Nontraumatic Disuse Osteoporosis During Its Active Phase
,”
Bone
,
7
(
6
), pp.
431
439
.10.1016/8756-3282(86)90003-7
42.
Schriefer
,
J. L.
,
Warden
,
S. J.
,
Saxon
,
L. K.
,
Robling
,
A. G.
, and
Turner
,
C. H.
,
2005
, “
Cellular Accommodation and the Response of Bone to Mechanical Loading
,”
J. Biomech.
,
38
(
9
), pp.
1838
1845
.10.1016/j.jbiomech.2004.08.017
43.
Michaelis
,
L.
, and
Menten
,
M. L.
,
1913
, “
Kinetik der invertinwirkung
,”
Biochem. Z
,
49
, pp.
333
369
.
44.
Chen
,
I. C.
,
Kuksenok
,
O.
,
Yashin
,
V. V.
,
Balazs
,
A. C.
, and
van Vliet
,
K. J.
,
2012
, “
Mechanical Resuscitation of Chemical Oscillations in Belousov–Zhabotinsky Gels
,”
Adv. Funct. Mater.
,
22
(
12
), pp.
2535
2541
.10.1002/adfm.201103036
45.
Klika
,
V.
,
2010
, “
Comparison of the Effects of Possible Mechanical Stimuli on the Rate of Biochemical Reactions
,”
J. Phys. Chem. B
,
114
(
32
), pp.
10567
10572
.10.1021/jp1000072
46.
Klika
,
V.
, and
Marsik
,
F.
,
2009
, “
Coupling Effect Between Mechanical Loading and chemical Reactions
,”
J. Phys. Chem. B
,
113
(
44
), pp.
14689
14697
.10.1021/jp903054y
47.
Klika
,
V.
, and
Grmela
,
M.
,
2013
, “
Coupling Between Chemical Kinetics and Mechanics That is Both Nonlinear and Compatible With Thermodynamics
,”
Phys. Rev. E.
,
87
(
1
), p.
012141
.10.1103/PhysRevE.87.012141
48.
Helgason
,
B.
,
Perilli
,
E.
,
Schileo
,
E.
,
Taddei
,
F.
,
Brynjolfsson
,
S.
, and
Viceconti
,
M.
,
2008
, “
Mathematical Relationships Between Bone Density and Mechanical Properties: A Literature Review
,”
Clin. Biomech.
,
23
(
2
), pp.
135
146
.10.1016/j.clinbiomech.2007.08.024
49.
Carter
,
D. R.
, and
Hayes
,
W. C.
,
1977
, “
The Compressive Behavior of Bone as a Two-Phase Porous Structure
,”
J. Bone Jt. Surg. Am.
,
59
(
7
), pp.
954
962
.
50.
Weinans
,
H.
,
Sumner
,
D. R.
,
Igloria
,
R.
, and
Natarajan
,
R. N.
,
2000
, “
Sensitivity of Periprosthetic Stress-Shielding to Load and the Bone Density-Modulus Relationship in Subject-Specific Finite Element Models
,”
J. Biomech.
,
33
(
7
), pp.
809
817
.10.1016/S0021-9290(00)00036-1
51.
Goldstein
,
S. A.
,
Matthews
,
L. S.
,
Kuhn
,
J. L.
, and
Hollister
,
S. J.
,
1991
, “
Trabecular Bone Remodeling: An Experimental Model
,”
J. Biomech.
,
24
(Suppl
1
), pp.
135
150
.10.1016/0021-9290(91)90384-Y
52.
Sawbones Worlwide
,
2013
, “
Composite Bone
.” Available from http://www.sawbones.com/products/bio/composite.aspx
53.
Balle
,
F.
,
2004
, “
Biomechanische untersuchungen zur Knochen—implantat—interaktion mit Hilfe der methode der finite elemente
,” Diploma thesis, LTM, University of Kaiserslautern, Kaiserslautern, Germany, U04-01.
54.
Behrens
,
B. A.
,
Nolte
,
I.
,
Wefstaedt
,
P.
,
Stukenborg-Colsman
,
C.
, and
Bouguecha
,
A.
,
2009
, “
Numerical Investigations on the Strain-Adaptive Bone Remodelling in the Periprosthetic Femur: Influence of the Boundary Conditions
,”
Biomed. Eng. Online
,
8
, pp.
7–9
.10.1186/1475-925X-8-7
55.
Lerch
,
M.
,
Kurtz
,
A.
,
Stukenborg-Colsman
,
C.
,
Nolte
,
I.
,
Weigel
,
N.
,
Bouguecha
,
A.
, and
Behrens
,
B. A.
,
2012
, “
Bone Remodeling After Total Hip Arthroplasty With a Short Stemmed Metaphyseal Loading Implant: Finite Element Analysis Validated by a Prospective DEXA Investigation
,”
J. Orthop. Res.
,
30
(
11
), pp.
1822
1829
.10.1002/jor.22120
56.
Brand
,
R. A.
,
Pedersen
,
D. R.
,
Davy
,
D. T.
,
Kotzar
,
G. M.
,
Heiple
,
K. G.
, and
Goldberg
,
V. M.
,
1994
, “
Comparison of Hip Force Calculations and Measurements in the Same Patient
,”
J. Arthroplasty
,
9
(
1
), pp.
45
51
.10.1016/0883-5403(94)90136-8
57.
Duda
,
G. N.
,
Heller
,
M.
,
Albinger
,
J.
,
Schulz
,
O.
,
Schneider
,
E.
, and
Claes
,
L.
,
1998
, “
Influence of Muscle Forces on Femoral Strain Distribution
,”
J. Biomech.
,
31
(
9
), pp.
841
846
.10.1016/S0021-9290(98)00080-3
58.
Kim
,
S. Y. R.
,
2010
, “
Biomechanical Evaluation of Periprosthetic Femoral Fracture Fixation
,” Master thesis, Ryerson University, Toronto, Canada.
59.
Truong
,
L. H.
,
Kuliwaba
,
J. S.
,
Tsangari
,
H.
, and
Fazzalari
,
N. L.
,
2006
, “
Differential Gene Expression of Bone Anabolic Factors and Trabecular Bone Architectural Changes in the Proximal Femoral Shaft of Primary Hip Osteoarthritis Patients
,”
Arthritis Res. Ther.
,
8
(
6
), p.
R188
.10.1186/ar2101
60.
Gruen
,
T. A.
,
McNeice
,
G. M.
, and
Amstutz
,
H. C.
,
1979
, “
Modes of Failures of Cemented Stem-Type Femoral Components
,”
Clin. Orthop. Relat. Res.
,
141
, pp.
17
27
.
61.
Hodgskinson
,
R.
, and
Currey
,
J. D.
,
1990
, “
The Effect of Variation in Structure on the Young's Modulus of Cancellous Bone: A Comparison of Human and Non-Human Material
,”
Proc. Inst. Mech. Eng., Part H
,
204
(
2
), pp.
115
121
.10.1243/PIME_PROC_1990_204_240_02
62.
Hoiberg
,
M.
,
Nielsen
,
T. L.
,
Wraae
,
K.
,
Abrahamsen
,
B.
,
Hagen
,
C.
,
Andersen
,
M.
, and
Brixen
,
K.
,
2007
, “
Population-Based Reference Values for Bone Mineral Density in Young Men
,”
Osteoporos. Int.
,
18
(
11
), pp.
1507
1514
.10.1007/s00198-007-0399-8
63.
Trevisan
,
C.
,
Bigoni
,
M.
,
Randelli
,
G.
,
Marinoni
,
E. C.
,
Peretti
,
G.
, and
Ortolani
,
S.
,
1997
, “
Periprosthetic Bone Density Around Fully Hydroxyapatite Coated Femoral Stem
,”
Clin. Orthop. Relat. Res.
,
340
, pp.
109
117
.10.1097/00003086-199707000-00015
64.
Wixson
,
R. L.
,
Stulberg
,
S. D.
,
Van Flandern
,
G. J.
, and
Puri
,
L.
,
1997
, “
Maintenance of Proximal Bone Mass With an Uncemented Femoral Stem Analysis With Dual-Energy X-Ray Absorptiometry
,”
J. Arthroplasty
,
12
(
4
), pp.
365
372
.10.1016/S0883-5403(97)90191-1
65.
Niinimaki
,
T.
, and
Jalovaara
,
P.
,
1995
, “
Bone Loss From the Proximal Femur After Arthroplasty With an Isoelastic Femoral Stem. BMD Measurements in 25 Patients After 9 Years
,”
Acta Orthop. Scand.
,
66
(
4
), pp.
347
351
.10.3109/17453679508995559
66.
Shim
,
V. B.
,
Pitto
,
R. P.
, and
Anderson
,
I. A.
,
2012
, “
Quantitative CT With Finite Element Analysis: Towards a Predictive Tool for Bone Remodelling Around an Uncemented Tapered Stem
,”
Int. Orthop.
,
36
(
7
), pp.
1363
1369
.10.1007/s00264-012-1513-x
67.
Glassman
,
A. H.
,
Crowninshield
,
R. D.
,
Schenck
,
R.
, and
Herberts
,
P.
,
2001
, “
A Low Stiffness Composite Biologically Fixed Prosthesis
,”
Clin. Orthop. Relat. Res.
,
393
, pp.
128
136
.10.1097/00003086-200112000-00015
68.
Ni
,
G. X.
,
Lu
,
W. W.
,
Chiu
,
K. Y.
, and
Fong
,
D. Y.
,
2005
, “
Cemented or Uncemented Femoral Component in Primary Total Hip Replacement? A Review From a Clinical and Radiological Perspective
,”
J. Orthop. Surg.
,
13
(
1
), pp.
96
105
.
69.
Dan
,
D.
,
Germann
,
D.
,
Burki
,
H.
,
Hausner
,
P.
,
Kappeler
,
U.
,
Meyer
,
R. P.
,
Klaghofer
,
R.
, and
Stoll
,
T.
,
2006
, “
Bone Loss After Total Hip Arthroplasty
,”
Rheumatol. Int.
,
26
(
9
), pp.
792
798
.10.1007/s00296-005-0077-0
You do not currently have access to this content.