Ex vivo biomechanical testing of growth plate samples provides essential information about its structural and physiological characteristics. Experimental limitations include the preservation of the samples since working with fresh tissues involves significant time and transportation costs. Little information is available on the storage of growth plate explants. The aim of this study was to determine storage conditions that could preserve growth plate biomechanical properties. Porcine ulnar growth plate explants (n = 5 per condition) were stored at either 4 °C for periods of 1, 2, 3, and 6 days or frozen at −20 °C with slow or rapid sample thawing. Samples were tested using stress relaxation tests under unconfined compression to assess five biomechanical parameters. The maximum compressive stress (σmax) and the equilibrium stress (σeq) were directly extracted from the experimental curves, while the fibril-network reinforced biphasic model was used to obtain the matrix modulus (Em), the fibril modulus (Ef), and the permeability (k). No significant changes were observed in σeq and Em in any of the tested storage conditions. Significant decreases and increases, respectively, were observed in σmax and k in the growth plate samples refrigerated for more than 48 h and in the frozen samples, when compared with the fresh samples. The fibril modulus Ef of all stored samples was significantly reduced compared to the fresh samples. These results indicate that the storage of growth plates in a humid chamber at 4 °C for a maximum of 48 h is the condition that minimizes the effects on the measured biomechanical parameters, with only Ef significantly reduced. Refrigerating growth plate explants for less than 48 h maintains their maximal stress, equilibrium stress, matrix modulus, and permeability. However, cold storage at 4 °C for more than 48 h and freezing storage at −20 °C significantly alter the biomechanical response of growth plate samples. Appropriate growth plate sample storage will be beneficial to save time and reduce transportation costs to pick up fresh samples.

References

References
1.
Thorngren
,
K. G.
and
Hansson
,
L. I.
,
1973
, “
Cell Kinetics and Morphology of the Growth Plate in the Normal and Hypophysectomized Rat
,”
Calcif. Tissue Res.
,
13
(
2
), pp.
113
129
.10.1007/BF02015402
2.
Hunziker
,
E. B.
and
Schenk
,
R. K.
,
1989
, “
Physiological Mechanisms Adopted by Chondrocytes in Regulating Longitudinal Bone Growth in Rats
,”
J. Physiol.
,
414
, pp.
55
71
.
3.
Farnum
,
C. E.
and
Wilsman
,
N. J.
,
1993
, “
Determination of Proliferative Characteristics of Growth Plate Chondrocytes by Labeling With Bromodeoxyuridine
,”
Calcif. Tissue Int.
,
52
(
2
), pp.
110
119
.10.1007/BF00308319
4.
Cohen
,
B.
,
Lai
,
W. M.
, and
Mow
,
V. C.
,
1998
, “
A Transversely Isotropic Biphasic Model for Unconfined Compression of Growth Plate and Chondroepiphysis
,”
ASME J. Biomech. Eng.
,
120
(
4
), pp.
491
496
.10.1115/1.2798019
5.
Sergerie
,
K.
,
Lacoursiere
,
M. O.
,
Levesque
,
M.
, and
Villemure
,
I.
,
2009
, “
Mechanical Properties of the Porcine Growth Plate and Its Three Zones From Unconfined Compression Tests
,”
J. Biomech.
,
42
(
4
), pp.
510
516
.10.1016/j.jbiomech.2008.11.026
6.
Sergerie
,
K.
,
Parent
,
S.
,
Beauchemin
,
F.
,
Londono
,
I.
,
Moldovan
,
F.
, and
Villemure
,
I.
,
2010
, “
Growth Plate Explants Respond Differently to In Vitro Static and Dynamic Loadings
,”
J. Orthop. Res.
,
29
(
4
), pp.
473
480
.10.1002/jor.21282
7.
Stokes
,
I. A.
,
Clark
,
K. C.
,
Farnum
,
C. E.
, and
Aronsson
,
D. D.
,
2007
, “
Alterations in the Growth Plate Associated With Growth Modulation by Sustained Compression or Distraction
,”
Bone
,
41
(
2
), pp.
197
205
.10.1016/j.bone.2007.04.180
8.
Cancel
,
M.
,
Grimard
,
G.
,
Thuillard-Crisinel
,
D.
,
Moldovan
,
F.
, and
Villemure
,
I.
,
2009
, “
Effects of In Vivo Static Compressive Loading on Aggrecan and Type II and X Collagens in the Rat Growth Plate Extracellular Matrix
,”
Bone
,
44
(
2
), pp.
306
315
.10.1016/j.bone.2008.09.005
9.
Villemure
,
I.
and
Stokes
,
I. A.
,
2009
, “
Growth Plate Mechanics and Mechanobiology. A Survey of Present Understanding
,”
J. Biomech.
,
42
(
12
), pp.
1793
1803
.10.1016/j.jbiomech.2009.05.021
10.
Ballock
,
R. T.
and
O'Keefe
,
R. J.
,
2003
, “
The Biology of the Growth Plate
,”
J. Bone Joint Surg. Am.
,
85
(
4
), pp.
715
726
.
11.
Mackie
,
E. J.
,
Tatarczuch
,
L.
, and
Mirams
,
M.
,
2011
, “
The Skeleton: A Multi-Functional Complex Organ: The Growth Plate Chondrocyte and Endochondral Ossification
,”
J. Endocrinol.
,
211
(
2
), pp.
109
221
.10.1530/JOE-11-0048
12.
Cohen
,
B.
,
Chorney
,
G. S.
,
Phillips
,
D. P.
,
Dick
,
H. M.
, and
Mow
,
V. C.
,
1994
, “
Compressive Stress-Relaxation Behavior of Bovine Growth-Plate May Be Described by the Nonlinear Biphasic Theory
,”
J. Orthop. Res.
,
12
(
6
), pp.
804
813
.10.1002/jor.1100120608
13.
Li
,
L. P.
,
Korhonen
,
R. K.
,
Iivarinen
,
J.
,
Jurvelin
,
J. S.
, and
Herzog
,
W.
,
2008
, “
Fluid Pressure Driven Fibril Reinforcement in Creep and Relaxation Tests of Articular Cartilage
,”
Med. Eng. Phys.
,
30
(
2
), pp.
182
189
.10.1016/j.medengphy.2007.03.001
14.
Park
,
S.
,
Krishnan
,
R.
,
Nicoll
,
S. B.
, and
Ateshian
,
G. A.
,
2003
, “
Cartilage Interstitial Fluid Load Support in Unconfined Compression
,”
J. Biomech.
,
36
(
12
), pp.
1785
1796
.10.1016/S0021-9290(03)00231-8
15.
Soulhat
,
J.
,
Buschmann
,
M. D.
, and
Shirazi-Adl
,
A.
,
1999
, “
A Fibril-Network-Reinforced Biphasic Model of Cartilage in Unconfined Compression
,”
ASME J. Biomech. Eng.
,
121
(
3
), pp.
340
347
.10.1115/1.2798330
16.
Ravindran
,
S.
,
Boyer
,
M. I.
,
Martens
,
E.
,
Ntouvali
,
H.
, and
Mcalinden
,
A.
,
2011
, “
Assessment of Epiphyseal Plate Allograft Viability and Function after Ex Vivo Storage in University of Wisconsin Solution
,”
J. Pediatr. Orthop.
,
31
(
7
), pp.
803
810
.10.1097/BPO.0b013e31822f16fb
17.
Sunagawa
,
T.
,
Ishida
,
O.
,
Ikuta
,
Y.
,
Yasunaga
,
Y.
, and
Ochi
,
M.
,
2005
, “
Role of Simple Cold Storage in Preventing Epiphyseal Growth Plate Impairment After Replantation Surgery in Immature Rats
,”
J. Reconstr. Microsurg.
,
21
(
7
), pp.
483
489
.10.1055/s-2005-918904
18.
Williams
,
S. K.
,
Amiel
,
D.
,
Ball
,
S. T.
,
Allen
,
R. T.
,
Wong
, V
. W.
,
Chen
,
A. C.
,
Sah
,
R. L.
, and
Bugbee
,
W. D.
,
2003
, “
Prolonged Storage Effects on the Articular Cartilage of Fresh Human Osteochondral Allografts
,”
J. Bone Joint Surg. Am.
,
85
(
11
), pp.
2111
2120
.
19.
Ball
,
S. T.
,
Amiel
,
D.
,
Williams
,
S. K.
,
Tontz
,
W.
,
Chen
,
A. C.
,
Sah
,
R. L.
, and
Bugbee
,
W. D.
,
2004
, “
The Effects of Storage on Fresh Human Osteochondral Allografts
,”
Clin. Orthop. Relat. Res.
,
418
, pp.
246
252
.10.1097/00003086-200401000-00043
20.
Rohde
,
R. S.
,
Studer
,
R. K.
, and
Chu
,
C. R.
,
2004
, “
Mini-Pig Fresh Osteochondral Allografts Deteriorate After 1 Week of Cold Storage
,”
Clin. Orthop. Relat. Res.
,
427
, pp.
226
233
.10.1097/01.blo.0000138955.27186.8e
21.
Changoor
,
A.
,
Fereydoonzad
,
L.
,
Yaroshinsky
,
A.
, and
Buschmann
,
M. D.
,
2010
, “
Effects of Refrigeration and Freezing on the Electromechanical and Biomechanical Properties of Articular Cartilage
,”
ASME J. Biomech. Eng.
,
132
(
6
), p.
064502
.10.1115/1.4000991
22.
Ranawat
,
A. S.
,
Vidal
,
A. F.
,
Chen
,
C. T.
,
Zelken
,
J. A.
,
Turner
,
A. S.
, and
Williams
,
R. J.
,
2008
, “
Material Properties of Fresh Cold-Stored Allografts for Osteochondral Defects at 1 Year
,”
Clin. Orthop. Relat. Res.
,
466
(
8
), pp.
1826
1836
.10.1007/s11999-008-0311-7
23.
Willet
,
T. L.
,
Whiteside
,
R.
,
Wild
,
P. M.
,
Wyss
,
U. P.
, and
Anastassiades
,
T.
,
2005
, “
Artefacts in the Mechanical Characterization of Porcine Articular Cartilage Due to Freezing
,”
Proc. Inst. Mech. Eng., Part H: J. Eng. Med.
,
219
(
1
), pp.
23
29
.10.1243/095441105X9200
24.
Szarko
,
M.
,
Muldrew
,
K.
, and
Bertram
,
J. E.
,
2010
, “
Freeze-Thaw Treatment Effects on the Dynamic Mechanical Properties of Articular Cartilage
,”
BMC Musculoskelet. Disord.
,
11
(
231
), pp.
1
8
.10.1186/1471-2474-11-1
25.
Lewis
,
P. B.
,
Williams
,
J. M.
,
Hallab
,
N.
,
Virdi
,
A.
,
Yanke
,
A.
, and
Cole
,
B. J.
,
2008
, “
Multiple Freeze-Thaw Cycled Meniscal Allograft Tissue: A Biomechanical, Biochemical, and Histologic Analysis
,”
J. Orthop. Res.
,
26
(
1
), pp.
49
55
.10.1002/jor.20473
26.
Søndenaa
,
K.
,
Alho
,
A.
, and
Nielsen
,
R.
,
1985
, “
Cryopreservation of Osteo-Chondral Grafts in Rabbits
,”
Acta Orthop. Scand.
,
56
(
3
), pp.
218
222
.10.3109/17453678508992998
27.
Bentley
,
G.
,
Smith
,
A. U.
, and
Mukerjhee
,
R.
,
1978
, “
Isolated Epiphyseal Chondrocyte Allografts Into Joint Surfaces. An Experimental Study in Rabbits
,”
Ann. Rheum. Dis.
,
37
(
5
), pp.
449
458
.10.1136/ard.37.5.449
28.
Kennedy
,
E. A.
,
Tordonado
,
D. S.
, and
Duma
,
S. M.
,
2007
, “
Effects of Freezing on the Mechanical Properties of Articular Cartilage
,”
Biomed. Sci. Instrum.
,
43
, pp.
342
347
.
29.
Wosu
,
R.
,
Sergerie
,
K.
,
Levesque
,
M.
, and
Villemure
,
I.
,
2011
, “
Mechanical Properties of the Porcine Growth Plate Vary With Developmental Stage
,”
Biomech. Model. Mechanobiol.
,
11
(
3–4
), pp.
303
312
.10.1007/s10237-011-0310-6
30.
Myers
,
E. R.
and
Mow
,
V. C.
,
1983
, “
Biomechanics of Cartilage and Its Response to Biomechanical Stimuli
,”
Cartilage: Structure, Function and Biochemistry
,
Academic Press
,
New York
.
31.
Lam
,
S. K.
,
Chan
,
S. C.
,
Leung
,
V. Y.
,
Lu
,
W. W.
,
Cheung
,
K. M.
, and
Luk
,
K. D.
,
2011
, “
The Role of Cryopreservation in the Biomechanical Properties of the Intervertebral Disc
,”
Eur. Cells Mater.
,
22
, pp.
393
402
.
32.
Abazari
,
A.
,
Jomha
,
N. M.
,
Elliott
,
J. A.
, and
McGann
,
L. E.
,
2013
, “
Cryopreservation of Articular Cartilage
,”
Cryobiology
,
66
(
3
), pp.
201
209
.10.1016/j.cryobiol.2013.03.001
You do not currently have access to this content.