The restoring force method (RFM), a nonparametric identification technique established in applied mechanics, was used to maximize the information obtained from moment-rotation hysteresis curves under pure moment flexion-extension testing of human lumbar spines. Data from a previous study in which functional spine units were tested intact, following simulated disk injury, and following implantation with an interspinous process spacer device were used. The RFM was used to estimate a surface map to characterize the dependence of the flexion-extension rotation on applied moment and the resulting axial displacement. This described each spine response as a compact, reduced-order model of the complex underlying nonlinear biomechanical characteristics of the tested specimens. The RFM was applied to two datasets, and successfully estimated the flexion-extension rotation, with error ranging from 3 to 23%. First, one specimen, tested in the intact, injured, and implanted conditions, was analyzed to assess the differences between the three specimen conditions. Second, intact specimens (N = 12) were analyzed to determine the specimen variability under equivalent testing conditions. Due to the complexity and nonlinearity of the hysteretic responses, the mathematical fit of each surface was defined in terms of 16 coefficients, or a bicubic fit, to minimize the identified (estimated) surface fit error. The results of the first analysis indicated large differences in the coefficients for each of the three testing conditions. For example, the coefficient corresponding to the linear stiffness (a01) had varied magnitude among the three conditions. In the second analysis of the 12 intact specimens, there was a large variability in the 12 unique sets of coefficients. Four coefficients, including two interaction terms comprised of both axial displacement and moment, were different from zero (p < 0.05), and provided necessary quantitative information to describe the hysteresis in three dimensions. The results suggest that further work in this area has the potential to supplement typical biomechanical parameters, such as range of motion, stiffness, and neutral zone, and provide a useful tool in diagnostic applications for the reliable detection and quantification of abnormal conditions of the spine.

References

References
1.
Wilke
,
H. J.
,
Wenger
,
K.
, and
Claes
,
L.
,
1998
, “
Testing Criteria for Spinal Implants: Recommendations for the Standardization of in Vitro Stability Testing of Spinal Implants
,”
Eur. Spine J.
,
7
(
2
), pp.
148
154
.10.1007/s005860050045
2.
Sangiorgio
,
S. N.
,
Sheikh
,
H.
,
Borkowski
,
S. L.
,
Khoo
,
L.
,
Warren
,
C. R.
, and
Ebramzadeh
,
E.
,
2011
, “
Comparison of Three Posterior Dynamic Stabilization Devices
,”
Spine
,
36
(
19
), pp.
E1251
E1258
.10.1097/BRS.0b013e318206cd84
3.
Kikkawa
,
J.
,
Cunningham
,
B. W.
,
Shirado
,
O.
,
Hu
,
N.
,
McAfee
,
P. C.
, and
Oda
,
H.
,
2010
, “
Biomechanical Evaluation of a Posterolateral Lumbar Disc Arthroplasty Device: An in Vitro Human Cadaveric Model
,”
Spine
,
35
(
19
), pp.
1760
1768
.10.1097/BRS.0b013e3181c87692
4.
Schmoelz
,
W.
,
Huber
,
J. F.
,
Nydegger
,
T.
,
Dipl
,
I.
,
Claes
,
L.
, and
Wilke
,
H. J.
,
2003
, “
Dynamic Stabilization of the Lumbar Spine and Its Effects on Adjacent Segments: An in Vitro Experiment
,”
J. Spinal Disord. Tech.
,
16
(
4
), pp.
418
423
.10.1097/00024720-200308000-00015
5.
Rohlmann
,
A.
,
Neller
,
S.
,
Bergmann
,
G.
,
Graichen
,
F.
,
Claes
,
L.
, and
Wilke
,
H. J.
,
2001
, “
Effect of an Internal Fixator and a Bone Graft on Intersegmental Spinal Motion and Intradiscal Pressure in the Adjacent Regions
,”
Eur. Spine J.
,
10
(
4
), pp.
301
308
.10.1007/s005860100295
6.
Panjabi
,
M.
,
Henderson
,
G.
,
Abjornson
,
C.
, and
Yue
,
J.
,
2007
, “
Multidirectional Testing of One- and Two-Level Prodisc-L Versus Simulated Fusions
,”
Spine (Phila Pa 1976)
,
32
(
12
), pp.
1311
1319
.10.1097/BRS.0b013e318059af6f
7.
Oda
,
I.
,
Cunningham
,
B. W.
,
Abumi
,
K.
,
Kaneda
,
K.
, and
McAfee
,
P. C.
,
1999
, “
The Stability of Reconstruction Methods After Thoracolumbar Total Spondylectomy. An in Vitro Investigation
,”
Spine (Phila Pa 1976)
,
24
(
16
), pp.
1634
1638
.10.1097/00007632-199908150-00003
8.
Xu
,
H. Z.
,
Wang
,
X. Y.
,
Chi
,
Y. L.
,
Zhu
,
Q. A.
,
Lin
,
Y.
,
Huang
,
Q. S.
, and
Dai
,
L. Y.
,
2006
, “
Biomechanical Evaluation of a Dynamic Pedicle Screw Fixation Device
,”
Clin. Biomech. (Bristol, Avon)
,
21
(
4
), pp.
330
336
.10.1016/j.clinbiomech.2005.12.004
9.
Molina, C., Kretzer, R. M., Hu, N., Umekoji, H., Cunningham, B. W., and Serhan, H., 2014, “Comparative In Vitro Biomechanical Analysis of a Novel Posterior Cervical Fixation Technique Versus Conventional Posterior-Based Constructs,”
J. Spinal Disord. Tech.
,
27
(1), pp. 40–47.10.1097/BSD.0b013e31824e1f86
10.
Kretzer
,
R. M.
,
Hu
,
N.
,
Kikkawa
,
J.
,
Garonzik
,
I. M.
,
Jallo
,
G. I.
,
Tortolani
,
P. J.
,
McAfee
,
P. C.
, and
Cunningham
,
B. W.
,
2010
, “
Surgical Management of Two-Versus Three-Column Injuries of the Cervicothoracic Junction: Biomechanical Comparison of Translaminar Screw and Pedicle Screw Fixation Using a Cadaveric Model
,”
Spine (Phila Pa 1976)
,
35
(
19
), pp.
E948
E954
.10.1097/BRS.0b013e3181c9f56c
11.
Wilke
,
H. J.
,
Schmidt
,
H.
,
Werner
,
K.
,
Schmolz
,
W.
, and
Drumm
,
J.
,
2006
, “
Biomechanical Evaluation of a New Total Posterior-Element Replacement System
,”
Spine
,
31
(
24
), pp.
2790
2796
; discussion 2797.10.1097/01.brs.0000245872.45554.c0
12.
Strube
,
P.
,
Tohtz
,
S.
,
Hoff
,
E.
,
Gross
,
C.
,
Perka
,
C.
, and
Putzier
,
M.
,
2010
, “
Dynamic Stabilization Adjacent to Single-Level Fusion: Part I. Biomechanical Effects on Lumbar Spinal Motion
,”
Eur. Spine J.
,
19
(
12
), pp.
2171
2180
.10.1007/s00586-010-1549-9
13.
Lindsey
,
D. P.
,
Swanson
,
K. E.
,
Fuchs
,
P.
,
Hsu
,
K. Y.
,
Zucherman
,
J. F.
, and
Yerby
,
S. A.
,
2003
, “
The Effects of an Interspinous Implant on the Kinematics of the Instrumented and Adjacent Levels in the Lumbar Spine
,”
Spine
,
28
(
19
), pp.
2192
2197
.10.1097/01.BRS.0000084877.88192.8E
14.
Androniku
,
A. M.
,
Bekey
,
G. A.
, and
Masri
,
S. F.
,
1982
, “
Identification of Nonlinear Hysteretic Systems Using Random Search
,” Proc 6th IFAC Symposium on Identification and System Parameter Estimation, Washington, D.C.,
pp.
263
268
.
15.
Banks
,
H. T.
,
Smith
,
R. C.
, and
Wang
,
Y.
,
1996
,
Smart Material Structures: Modeling, Estimation and Control
,
Masson, John Wiley
,
Paris/Chichester.
16.
Chassiakos
,
A. G.
,
Masri
,
S. F.
,
Smyth
,
A. W.
, and
Caughey
,
T. K.
,
1998
, “
On-Line Identification of Hysteretic Systems
,”
ASME J. Appl. Mech.
,
65
(
1
), pp.
194
203
.10.1115/1.2789025
17.
Smyth
,
A. W.
,
Masri
,
S. F.
,
Chassiakos
,
A. G.
, and
Caughey
,
T. K.
,
1999
, “
On-Line Parametric Identification of Mdof Nonlinear Hysteretic Systems
,”
J. Eng. Mech.
,
125
(
2
), pp.
133
142
.10.1061/(ASCE)0733-9399(1999)125:2(133)
18.
Smyth
,
A. W.
,
Masri
,
S. F.
,
Kosmatopoulos
,
E. B.
,
Chassiakos
,
A. G.
, and
Caughey
,
T. K.
,
2002
, “
Development of Adaptive Modeling Techniques for Non-Linear Hysteretic Systems
,”
Int. J. Nonlinear Mech.
,
37
(
8
), pp.
1435
1451
.10.1016/S0020-7462(02)00031-8
19.
Wen
,
Y. K.
,
1976
, “
Method for Random Vibration of Hysteretic Systems
,”
J. Eng. Mech. Div.
,
102
(
2
), pp.
249
263
.
20.
Worden
,
K.
,
1989
, “
Parametric and Nonparametric Identification of Nonlinearity in Structural Dynamics
,” Ph.D. thesis, Heriot Watt University, Edinburgh, Scotland, UK.
21.
Masri
,
S. F.
, and
Caughey
,
T. K.
,
1979
, “
A Nonparametric Identification Technique for Nonlinear Dynamic Problems
,”
ASME J. Appl. Mech.
,
46
(2), pp.
433
447
.10.1115/1.3424568
22.
Anderson
,
J. C.
,
Masri
,
S. F.
,
Miller
,
R. K.
,
Sassi
,
H.
, and
Caughey
,
T. K.
,
1984
, “
Identification of a Nonlinear Building Model From Response Measurements Under Earthquake Excitation
,”
Proceeding of the Eight World Conference on Earthquake Engr.
,
San Francisco, CA
, VI, pp.
95
102
.
23.
Masri
,
S. F.
,
Miller
,
R. K.
,
Traina
,
M.-I.
, and
Caughey
,
T. K.
,
1991
, “
Development of Bearing Friction Models From Experimental Measurements
,”
J. Sound Vib.
,
148
(
3
), pp.
455
475
.10.1016/0022-460X(91)90478-3
24.
Worden
,
K.
, and
Tomlinson
,
G. R.
,
2001
,
Nonlinearity in Structural Dynamics: Detection, Identification, and Modelling
,
Institute of Physics
,
London
, p. 258.
25.
Masri
,
S. F.
,
Caffrey
,
J. P.
,
Caughey
,
T. K.
,
Smyth
,
A. W.
, and
Chassiakos
,
A. G.
,
2004
, “
Identification of the State Equation in Complex Nonlinear Systems
,”
Int. J. Non-Linear Mech.
,
39
(
7
), pp.
1111
1127
.10.1016/S0020-7462(03)00109-4
26.
Masri
,
S. F.
,
Caffrey
,
J. P.
,
Caughey
,
T. K.
,
Smyth
,
A. W.
, and
Chassiakos
,
A. G.
,
2005
, “
A General Data-Based Approach for Developing Reduced-Order Models of Nonlinear Mdof Systems
,”
Nonlinear Dyn.
,
39
(
1-2
), pp.
95
112
.10.1007/s11071-005-1916-y
27.
Wilke
,
H. J.
,
Claes
,
L.
,
Schmitt
,
H.
, and
Wolf
,
S.
,
1994
, “
A Universal Spine Tester for in Vitro Experiments With Muscle Force Simulation
,”
Eur. Spine J.
,
3
(
2
), pp.
91
97
.10.1007/BF02221446
28.
Wheeler
,
D. J.
,
Freeman
,
A. L.
,
Ellingson
,
A. M.
,
Nuckley
,
D. J.
,
Buckley
,
J. M.
,
Scheer
,
J. K.
,
Crawford
,
N. R.
, and
Bechtold
,
J. E.
,
2011
, “
Inter-Laboratory Variability in in Vitro Spinal Segment Flexibility Testing
,”
J. Biomech.
,
44
(
13
), pp.
2383
2387
.10.1016/j.jbiomech.2011.06.034
29.
Masri
,
S. F.
,
Ghanem
,
R.
,
Arrate
,
F.
, and
Caffrey
,
J. P.
,
2009
, “
A Data-Based Procedure for Analyzing the Response of Uncertain Nonlinear Systems
,”
Struct. Control Health Monitor.
,
16
, pp.
724
750
.10.1002/stc.322
30.
Thompson
,
R. E.
,
Barker
,
T. M.
, and
Pearcy
,
M. J.
,
2003
, “
Defining the Neutral Zone of Sheep Intervertebral Joints During Dynamic Motions: An in Vitro Study
,”
Clin. Biomech.
,
18
(
2
), pp.
89
98
.10.1016/S0268-0033(02)00180-8
31.
Hasegawa
,
K.
,
Kitahara
,
K.
,
Hara
,
T.
,
Takano
,
K.
,
Shimoda
,
H.
, and
Homma
,
T.
,
2008
, “
Evaluation of Lumbar Segmental Instability in Degenerative Diseases by Using a New Intraoperative Measurement System
,”
J. Neurosurg. Spine
,
8
(
3
), pp.
255
262
.10.3171/SPI/2008/8/3/255
32.
Spenciner
,
D.
,
Greene
,
D.
,
Paiva
,
J.
,
Palumbo
,
M.
, and
Crisco
,
J.
,
2006
, “
The Multidirectional Bending Properties of the Human Lumbar Intervertebral Disc
,”
Spine J.
,
6
(
3
), pp.
248
257
.10.1016/j.spinee.2005.08.020
33.
Smit
,
T. H.
,
van Tunen
,
M. S.
,
van der Veen
,
A. J.
,
Kingma
,
I.
, and
van Dieen
,
J. H.
,
2011
, “
Quantifying Intervertebral Disc Mechanics: A New Definition of the Neutral Zone
,”
BMC Musculoskelet Disord
.,
12
, p.
38
.10.1186/1471-2474-12-38
34.
Banks
,
H. T.
,
Kurdila
,
A. J.
, and
Webb
,
G.
,
1997
, “
Identification of Hysteretic Control Influence Operators Representing Smart Actuators Part I: Formulation
,”
Math. Prob. Eng.
,
3
(
4
), pp.
287
328
.10.1155/S1024123X97000586
35.
Banks
,
H. T.
,
Kurdila
,
A. J.
, and
Webb
,
G.
,
1997
, “
Identification of Hysteretic Control Influence Operators Representing Smart Actuators Part II: Convergent Approximations
,”
J. Intell. Mater. Syst. Struct.
,
8
(
6
), pp.
536
550
.10.1177/1045389X9700800606
36.
Saur
,
P. M.
,
Ensink
,
F. B.
,
Frese
,
K.
,
Seeger
,
D.
, and
Hildebrandt
,
J.
,
1996
, “
Lumbar Range of Motion: Reliability and Validity of the Inclinometer Technique in the Clinical Measurement of Trunk Flexibility
,”
Spine (Phila Pa 1976)
,
21
(
11
), pp.
1332
1338
.10.1097/00007632-199606010-00011
37.
Parks
,
K. A.
,
Crichton
,
K. S.
,
Goldford
,
R. J.
, and
McGill
,
S. M.
,
2003
, “
A Comparison of Lumbar Range of Motion and Functional Ability Scores in Patients With Low Back Pain: Assessment for Range of Motion Validity
,”
Spine (Phila Pa 1976)
,
28
(
4
), pp.
380
384
.10.1097/01.brs.0000048466.78077.a6
38.
Mayer
,
T. G.
,
Tencer
,
A. F.
,
Kristoferson
,
S.
, and
Mooney
,
V.
,
1984
, “
Use of Noninvasive Techniques for Quantification of Spinal Range-of-Motion in Normal Subjects and Chronic Low-Back Dysfunction Patients
,”
Spine (Phila Pa 1976)
,
9
(
6
), pp.
588
595
.10.1097/00007632-198409000-00009
39.
Bible
,
J. E.
,
Biswas
,
D.
,
Miller
,
C. P.
,
Whang
,
P. G.
, and
Grauer
,
J. N.
,
2010
, “
Normal Functional Range of Motion of the Lumbar Spine During 15 Activities of Daily Living
,”
J Spinal Disord. Tech.
,
23
(
2
), pp.
106
112
.10.1097/BSD.0b013e3181981823
40.
Cholewicki
,
J.
, and
McGill
,
S. M.
,
1996
, “
Mechanical Stability of the in Vivo Lumbar Spine: Implications for Injury and Chronic Low Back Pain
,”
Clin. Biomech. (Bristol, Avon)
,
11
(
1
), pp.
1
15
.10.1016/0268-0033(95)00035-6
41.
Adams
,
M. A.
and
Dolan
,
P.
,
1991
, “
A Technique for Quantifying the Bending Moment Acting on the Lumbar Spine in Vivo
,”
J. Biomech.
,
24
(
2
), pp.
117
126
.10.1016/0021-9290(91)90356-R
42.
Shum
,
G. L.
,
Crosbie
,
J.
, and
Lee
,
R. Y.
,
2010
, “
Back Pain Is Associated With Changes in Loading Pattern Throughout Forward and Backward Bending
,”
Spine (Phila Pa
1976
),
35
(
25
), pp.
E1472
E1478
.10.1097/BRS.0b013e3181ecd71c
43.
Makihara
,
Y.
,
Nishino
,
A.
,
Fukubayashi
,
T.
, and
Kanamori
,
A.
,
2006
, “
Decrease of Knee Flexion Torque in Patients With ACL Reconstruction: Combined Analysis of the Architecture and Function of the Knee Flexor Muscles
,”
Knee Surg. Sports Traumatol. Arthrosc.
,
14
(
4
), pp.
310
317
.10.1007/s00167-005-0701-2
44.
LeBrun
,
C. T.
,
Langford
,
J. R.
, and
Sagi
,
H. C.
,
2012
, “
Functional Outcomes After Operatively Treated Patella Fractures
,”
J. Orthop. Trauma
,
26
(
7
), pp.
422
426
.10.1097/BOT.0b013e318228c1a1
45.
Tyler
,
T. F.
,
Nahow
,
R. C.
,
Nicholas
,
S. J.
, and
McHugh
,
M. P.
,
2005
, “
Quantifying Shoulder Rotation Weakness in Patients With Shoulder Impingement
,”
J. Shoulder Elbow Surg.
,
14
(
6
), pp.
570
574
.10.1016/j.jse.2005.03.003
You do not currently have access to this content.