We sought to investigate the effects of endovascular stents with different links for treating stenotic vertebral artery and to determine the relationship between the shape of the link and in-stent restenosis (ISR). We also attempted to provide scientific guidelines for stent design and selection for clinical procedures. Models of three types of stent with different links (L-stent, V-stent, and S-stent) and an idealized stenotic vertebral artery were established. The deployment procedure for the stent in the stenotic vertebral artery was simulated for solid mechanics analysis. Next, the deformed models were extracted to construct the blood flow domain, and numerical simulations of the hemodynamics in these models were performed using the finite element method. The numerical results demonstrated that: (1) Compared with the L-stent and V-stent, the S-stent has a better flexibility and induces less stress in the stent strut. Furthermore, less stress is generated in the arterial wall. (2) Vascular straightening is scarcely influenced by the shape of the link, but it is closely related to the flexibility of the stent. (3) The S-stent has the smallest foreshortening among the three types of stents. (4) Compared with the V-stent and S-stent, the L-stent causes a smaller area with low wall shear stress, less blood stagnation area, and better blood flow close to the artery wall. From the viewpoint of the combination of solid mechanics and hemodynamics, the S-stent has better therapeutic effects because of its lower potential for inducing ISR and its better prospects in clinical applications compared with the L-stent and V-stent.

References

References
1.
Caplan
,
L. R.
,
Wityk
,
R. J.
, and
Glass
T. A.
,
2004
, “
New England Medical Center Posterior Circulation Registry
,”
Ann. Neurol.
,
56
(
3
), pp.
389
398
.10.1002/ana.20204
2.
Savitz
,
S. I.
, and
Caplan
,
L. R.
,
2005
, “
Vertebrobasilar Disease
,”
N. Engl. J. Med.
,
352
(
25
), pp.
2618
2626
.10.1056/NEJMra041544
3.
Dabus
,
G.
,
Gerstle
,
R. J.
, and
Derdeyn
C. P.
,
2006
, “
Endovascular Treatment of the Vertebral Artery Origin in Patients With Symptoms of Vertebrobasilar Ischemia
,”
Neuroradiology
,
48
(
12
), pp.
917
923
.10.1007/s00234-006-0151-7
4.
Taylor
,
R. A.
,
Siddiq
,
F.
, and
Suri
,
M. F.
,
2008
, “
Risk Factors for In-Stent restenosis after Vertebral ostium Stenting
,”
J. Endovasc. Ther.
,
15
(
2
), pp.
203
212
.10.1583/07-2175.1
5.
Wholey
,
M. H.
,
Wholey
,
M.
, and
Mathias
,
K.
,
2000
, “
Global Experience in Cervical Carotid Artery Stent Placement
,”
Catherization Cardiovasc. Interven.
,
50
(
2
), pp.
160
167
.10.1002/(SICI)1522-726X(200006)50:2<160::AID-CCD2>3.0.CO;2-E
6.
Wehman
,
J. C.
,
Hanel
,
R. A.
, and
Guidot
,
C. A.
,
2004
, “
Atherosclerotic Occlusive Extracranial Vertebral Artery Disease
,”
J. Interven. Cardiol.
,
17
(
4
), pp.
219
232
.10.1111/j.1540-8183.2004.04055.x
7.
Mortier
,
P.
,
Holzapfel
,
G. A.
, and
De Beule
,
M.
,
2010
, “
A Novel Simulation strategy for Stent Insertion and Deployment in Curved Coronary Bifurcations: Comparison of Three Drug-Eluting Stents
,”
Ann. Biomed. Eng.
,
38
(
1
), pp.
88
99
.10.1007/s10439-009-9836-5
8.
Gijsen
,
F.
,
Migliavacca
,
F.
, and
Schievano
,
S.
,
2008
, “
Simulation of Stent Deployment in a Realistic Human Coronary Artery
,”
Biomed. Eng. Online
,
7
, p.
23
.10.1186/1475-925X-7-23
9.
Wu
,
W.
,
Wang
,
W. Q.
, and
Yang
,
D. Z.
,
2007
, “
Stent Expansion in Curved Vessel and Their Interactions: A Finite Element Analysis
,”
J. Biomech.
,
40
(
11
), pp.
2580
2585
.10.1016/j.jbiomech.2006.11.009
10.
Gu
,
L. X.
,
Zhao
,
S. J.
, and
Muttyam
,
A. K.
,
2010
, “
The Relation Between the Arterial Stress and Restenosis Rate After Coronary Stenting
,”
ASME J. Med. Devices
,
4
(
3
), p.
031005
.10.1115/1.4002238
11.
Colombo
,
A.
,
Stankovic
,
G.
, and
Moses
,
J. W.
,
2002
, “
Selection of Coronary Stents
,”
J. Am. College Cardiol.
,
40
(
6
), pp.
1021
1033
.10.1016/S0735-1097(02)02123-X
12.
Balossino
,
R.
,
Gervaso
,
F.
, and
Migliavacca
,
F.
,
2008
, “
Effects of Different Stent Designs on Local Hemodynamics in Stented Arteries
,”
J. Biomech.
,
41
(
5
), pp.
1053
1061
.10.1016/j.jbiomech.2007.12.005
13.
Cheng
,
J.
, and
Ni
,
Z.
,
2010
, “
A Numerical Study on the Wall Shear Stress of Stented Artery Model
,”
IEEE 2010 International Conference on Mechatronics and Automation (ICMA)
, Piscataway, NJ.
14.
Morlacchi
,
S.
,
Keller
,
B.
, and
Arcangeli
,
P.
,
2011
, “
Hemodynamics and In-Stent Restenosis: Micro-CT Images, Histology, and Computer Simulations
,”
Ann. Biomed. Eng.
,
39
(
10
), pp.
2615
2626
.10.1007/s10439-011-0355-9
15.
Chiu
,
J. J.
, and
Chien
,
S.
,
2011
, “
Effects of Disturbed Flow on Vascular Endothelium: Pathophysiological Basis and Clinical Perspectives
,”
Physiol. Rev.
,
91
(
1
), pp.
327
387
.10.1152/physrev.00047.2009
16.
Takashima
,
K.
,
Shimomura
,
R.
, and
Kitou
,
T.
,
2007
, “
Contact and Friction Between Catheter and Blood Vessel
,”
Trib. Int.
,
40
(
2
), pp.
319
328
.10.1016/j.triboint.2005.10.010
17.
Auricchio
,
F.
,
Conti
,
M.
, and
De Beule
,
M.
,
2011
, “
Carotid Artery Stenting Simulation: From Patient-Specific Images to Finite Element Analysis
,”
Med. Eng. Phys.
,
33
(
3
), pp.
281
289
.10.1016/j.medengphy.2010.10.011
18.
Holazpfel
,
G. A.
,
Stadlr
,
M.
, and
Gasser
,
T. C.
,
2005
, “
Changes in the Mechanical Environment of Stenotic Arteries During Interaction With Stents: Computational Assessment of Parametric Stent Designs
,”
ASME J. Biomech. Eng.
,
127
(
1
), pp.
166
180
.10.1115/1.1835362
19.
Rieu
,
R.
,
Barragan
,
P.
, and
Garitey
,
V.
,
2003
, “
Assessment of the Trackability, Flexibility, and Conformbility of Coronary Stents: A Comparative Analysis
,”
Catheterization Cardiovasc. Interven.
,
59
(
4
), pp.
496
503
.10.1002/ccd.10583
20.
Wang
,
W. Q.
,
Liang
,
D. K.
, and
Yang
,
D. Z.
,
2006
, “
Analysis of the Transient Expansion Behavior and Design Optimization of Coronary Stents by Finite Element Method
,”
J. Biomech.
,
39
(
1
), pp.
21
32
.10.1016/j.jbiomech.2004.11.003
21.
Wentzel
,
J. J.
,
Whelan
,
D. M.
, and
Van Der Giessen
,
W. J.
,
2000
, “
Coronary Stent Implantation Changes 3-D Vessel Geometry and 3-D Shear Stress Distribution
,”
J. Biomech.
,
33
(
10
), pp.
1287
1295
.10.1016/S0021-9290(00)00066-X
22.
Chen
,
M. C. Y.
,
Lu
,
P. C.
, and
Chen
,
J. S. K.
,
2005
, “
Computational Hemodynamics of an Implanted Coronary Stent Based on Three-Dimensional Cine Angiography Reconstruction
,”
Am. Soc. Art. Organs J.
,
51
(
4
), pp.
313
320
.10.1097/01.mat.0000169117.07070.fb
23.
Johnston
,
B. M.
,
Johnston
,
P. R.
, and
Corney
,
S.
,
2006
, “
Non-Newtonian Blood Flow in Human Right Coronary Arteries: Transient Simulations
,”
J. Biomech.
,
39
(
6
), pp.
1116
1128
.10.1016/j.jbiomech.2005.01.034
24.
LaDisa
,
J. F.
,
Olson
,
L. E.
, and
Guler
,
I.
,
2005
, “
Circumferential Vascular Deformation After Stent Implantation Alters Wall Shear Stress Evaluated With Time-Dependent 3D Computational Fluid Dynamics Models
,”
J. Appl. Physiol.
,
98
(
3
), pp.
947
957
.10.1152/japplphysiol.00872.2004
25.
Niu
,
J.
,
Qiao
,
A. K.
, and
Jiao
,
L. Q.
,
2013
, “
Hemodynamic Analysis of Stent Expansion Ratio for the Vertebral Artery Ostium Stenosis Intervention
,”
J. Mech. Med. Biol.
,
13
(
4
), p.
1350058
.10.1142/S0219519413500589
26.
Augsburger
,
L.
,
Farhat
,
M.
, and
Reymond
,
P.
,
2009
, “
Effect of Flow Diverter Porosity on Intraaneurysmal Blood Flow
,”
Clin. Neuroradiol.
,
19
(
3
), pp.
204
214
.10.1007/s00062-009-9005-0
27.
Chua
,
S.
,
Macdonald
,
B. J.
, and
Hashmi
,
M.
,
2004
, “
Effects of Varying Slotted Tube (Stent) Geometry on Its Expansion Behaviour Using Finite Element Method
,”
J. Mat. Process. Tech.
,
155
(
SIPart 2
), pp.
1764
1771
.10.1016/j.jmatprotec.2004.04.395
28.
Mills
,
C. L.
,
Gabe
,
I. T.
, and
Gault
,
J. H.
,
1970
, “
Pressure-Flow Relationships and Vascular Impedance in Man
,”
Cardiovasc. Res.
,
4
(
4
), pp.
405
417
.10.1093/cvr/4.4.405
29.
Malek
,
A. M.
,
Alper
,
S. L.
, and
Izumo
,
S.
1999
, “
Hemodynamic Shear Stress and Its role in Atherosclerosis
,”
JAMA
,
282
(
21
), pp.
2035
2042
.10.1001/jama.282.21.2035
30.
Lee
,
S. W.
,
Lee
,
S.
, and
Fischer
,
P. F.
,
2008
, “
Direct simulations of transitional flow in a Patient-Specific Carotid Bifurcation With Stenosis
,”
IFOST 2008: Proceeding of the Third International Forum on Strategic Technologies
, Novosibirsk-Tomsk, Russia, pp.
475
479
.
31.
Moore
,
J. E.
, and
Berry
,
J. L.
,
2002
, “
Fluid and Solid Mechanical Implications of Vascular Stenting
,”
Ann. Biomed. Eng.
,
30
(
4
), pp.
498
508
.10.1114/1.1458594
32.
Edelman
,
E. R.
, and
Rogers
,
C.
,
1998
, “
Pathobiologic Responses to Stenting
,”
Am. J. Cardiol.
,
81
(
7ASI
), pp.
4E
6E
.10.1016/S0002-9149(98)00189-1
33.
Tang
,
D.
,
Yang
,
C.
, and
Mondal
,
S.
,
2008
, “
A Negative Correlation Between Human Carotid Atherosclerosis Plaque Progression and Plaque Wall Stress: In Vivo MRI-Based 2D/3D FSI Models
,”
J. Biomech.
,
41
(
4
), pp.
727
736
.10.1016/j.jbiomech.2007.11.026
34.
Malvè
,
M.
,
Chandra
,
S.
,
García
,
A.
,
Mena
,
A.
,
Martínez
,
M. A.
,
Finol
,
E. A.
and
Doblaré
,
M.
,
2013
, “
Impedance-Based Outflow Boundary Conditions for Human Carotid Haemodynamics
,”
Comput. Meth. Biomech. Biomed. Eng
. 2013 Feb 6. [Epub ahead of print]10.1080/10255842.2012.744396
35.
Torii
,
R.
,
Oshima
,
M.
, and
Kobayashi
,
T.
,
2006
, “
Computer Modeling of Cardiovascular Fluid-Structure Interactions With the Deforming-Spatial-Domain/Stabilized Space-Time Formulation
,”
Comput. Meth. Appl. Mech. Eng.
,
195
(
16
), pp.
1885
1895
.10.1016/j.cma.2005.05.050
36.
Lantz
,
J.
,
Renner
,
J.
, and
Karlsson
M.
,
2011
, “
Wall Shear Stress in a Subject Specific Human Aorta—Influence of Fluid-Structure Interaction
,”
Int. J. Appl. Mech.
,
4
(
3
), pp.
759
778
.10.1142/S1758825111001226
37.
Kelly
,
S.
, and
O'Rourke
,
M.
,
2012
, “
Fluid, Solid and Fluid–Structure Interaction Simulations on Patient-Based Abdominal Aortic Aneurysm Models
,”
Proc. IMechE H J. Eng. Med.
,
226
(
4
), pp.
288
304
.10.1177/0954411911435592
You do not currently have access to this content.