Computational fluid dynamics (CFD) opens up multiple opportunities to investigate the hemodynamics of the human vascular system. However, due to numerous assumptions the acceptance of CFD among physicians is still limited in practice and validation through comparison is mandatory. Time-dependent quantitative phase-contrast magnetic resonance imaging PC-MRI measurements in a healthy volunteer and two intracranial aneurysms were carried out at 3 and 7 Tesla. Based on the acquired images, three-dimensional (3D) models of the aneurysms were reconstructed and used for the numerical simulations. Flow information from the MR measurements were applied as boundary conditions. The four-dimensional (4D) velocity fields obtained by CFD and MRI were qualitatively as well as quantitatively compared including cut planes and vector analyses. For all cases a high similarity of the velocity patterns was observed. Additionally, the quantitative analysis revealed a good agreement between CFD and MRI. Deviations were caused by minor differences between the reconstructed vessel models and the actual lumen. The comparisons between diastole and systole indicate that relative differences between MRI and CFD are intensified with increasing velocity. The findings of this study lead to the conclusion that CFD and MRI agree well in predicting intracranial velocities when realistic geometries and boundary conditions are provided. Due to the considerably higher temporal and spatial resolution of CFD compared to MRI, complex flow patterns can be further investigated in order to evaluate their role with respect to aneurysm formation or rupture. Nevertheless, special care is required regarding the vessel reconstruction since the geometry has a major impact on the subsequent numerical results.

References

References
1.
Cebral
,
J. R.
,
Mut
,
F.
,
Weir
,
J.
, and
Putman
,
C.
,
2011
, “
Quantitative Characterization of the Hemodynamic Environment in Ruptured and Unruptured Brain Aneurysms
,”
Am. J. Neuroradiol.
,
32
(
1
), pp.
145
151
.10.3174/ajnr.A2274
2.
Zuleger
,
D. I.
,
Poulikakos
,
D.
,
Valavanis
,
A.
, and
Kollias
,
S. S.
,
2010
, “
Combining Magnetic Resonance Measurements With Numerical Simulations—Extracting Blood Flow Physiology Information Relevant to the Investigation of Intracranial Aneurysms in the Circle of Willis
,”
Int. J. Heat Fluid
,
31
(
6
), pp.
1032
1039
.10.1016/j.ijheatfluidflow.2010.07.003
3.
Castro
,
M. A.
,
Putman
,
C. M.
, and
Cebral
,
J. R.
,
2006
, “
Computational Fluid Dynamics Modeling of Intracranial Aneurysms: Effects of Parent Artery Segmentation on Intra-Aneurysmal Hemodynamics
,”
Am. J. Neuroradiol.
,
27
(
8
), pp.
1703
1709
.
4.
Sforza
,
D. M.
,
Putman
,
C. M.
, and
Cebral
,
J. R.
,
2009
, “
Hemodynamics of Cerebral Aneurysms
,”
Annu. Rev. Fluid Mech.
,
41
, pp.
91
107
.10.1146/annurev.fluid.40.111406.102126
5.
Meng
,
H.
,
Wang
,
Z. J.
,
Hoi
,
Y.
,
Gao
,
L.
,
Metaxa
,
E.
,
Swartz
,
D. D.
, and
Kolega
,
J.
,
2007
, “
Complex Hemodynamics at the Apex of an Arterial Bifurcation Induces Vascular Remodeling Resembling Cerebral Aneurysm Initiation
,”
Stroke
,
38
(
6
), pp.
1924
1931
.10.1161/STROKEAHA.106.481234
6.
Neugebauer
,
M.
,
Janiga
,
G.
,
Beuing
,
O.
,
Skalej
,
M.
, and
Preim
,
B.
,
2010
, “
Computer-Aided Modelling of Blood Flow for the Treatment of Cerebral Aneurysms
,”
Int. J. Biomed. Eng. Tech.
,
55
, pp.
37
41
.
7.
Marzo
,
A.
,
Singh
,
P.
,
Larrabide
,
I.
,
Radaelli
,
A.
,
Coley
,
S.
,
Gwilliam
,
M.
,
Wilkinson
,
I. D.
,
Lawford
,
P.
,
Reymond
,
P.
,
Patel
,
U.
,
Frangi
,
A.
, and
Hose
,
D. R.
,
2011
, “
Computational Hemodynamics in Cerebral Aneurysms: The Effects of Modeled Versus Measured Boundary Conditions
,”
Ann. Biomed. Eng.
,
39
(
2
), pp.
884
896
.10.1007/s10439-010-0187-z
8.
Fiorella
,
D.
,
Sadasivan
,
C.
,
Woo
,
H. H.
, and
Lieber
,
B.
,
2011
, “
Regarding `Aneurysm Rupture Following Treatment With Flow-Diverting Stents: Computational Hemodynamics Analysis of Treatment’
,”
Am. J. Neuroradiol.
,
32
(
5
), pp.
E95–97
; author reply E98–100.10.3174/ajnr.A2534
9.
Kallmes
,
D. F.
,
2012
, “
Point: CFD-Computational Fluid Dynamics or Confounding Factor Dissemination
,”
Am. J. Neuroradiol.
,
33
(
3
), pp.
395
396
.10.3174/ajnr.A2993
10.
Bordás
,
R.
,
Seshadhri
,
S.
,
Janiga
,
G.
,
Skalej
,
M.
, and
Thévenin
,
D.
,
2012
, “
Experimental Validation of Numerical Simulations on a Cerebral Aneurysm Phantom Model
,”
Interv. Med. Appl. Sci.
,
4
(
4
), pp.
193
205
.10.1556/IMAS.4.2012.4.4
11.
Ford
,
M. D.
,
Nikolov
,
H. N.
,
Milner
,
J. S.
,
Lownie
,
S. P.
,
Demont
,
E. M.
,
Kalata
,
W.
,
Loth
,
F.
,
Holdsworth
,
D. W.
, and
Steinman
,
D. A.
,
2008
, “
PIV-Measured Versus CFD-Predicted Flow Dynamics in Anatomically Realistic Cerebral Aneurysm Models
,”
ASME J. Biomech. Eng.
,
130
(
2
), p.
021015
.10.1115/1.2900724
12.
Hoi
,
Y.
,
Woodward
,
S. H.
,
Kim
,
M.
,
Taulbee
,
D. B.
, and
Meng
,
H.
,
2006
, “
Validation of CFD Simulations of Cerebral Aneurysms With Implication of Geometric Variations
,”
ASME J. Biomech. Eng.
,
128
(
6
), pp.
844
851
.10.1115/1.2354209
13.
Rayz
,
V. L.
,
Boussel
,
L.
,
Acevedo-Bolton
,
G.
,
Martin
,
A. J.
,
Young
,
W. L.
,
Lawton
,
M. T.
,
Higashida
,
R.
, and
Saloner
,
D.
,
2008
, “
Numerical Simulations of Flow in Cerebral Aneurysms: Comparison of CFD Results and In Vivo MRI Measurements
,”
ASME J. Biomech. Eng.
,
130
(
5
), p.
051011
.10.1115/1.2970056
14.
Hollnagel
,
D. I.
,
Summers
,
P. E.
,
Poulikakos
,
D.
, and
Kollias
,
S. S.
,
2009
, “
Comparative Velocity Investigations in Cerebral Arteries and Aneurysms: 3D Phase-Contrast MR Angiography, Laser Doppler Velocimetry and Computational Fluid Dynamics
,”
NMR Biomed.
,
22
(
8
), pp.
795
808
.10.1002/nbm.1389
15.
Boussel
,
L.
,
Rayz
,
V.
,
Martin
,
A.
,
Acevedo-Bolton
,
G.
,
Lawton
,
M. T.
,
Higashida
,
R.
,
Smith
,
W. S.
,
Young
,
W. L.
, and
Saloner
,
D.
,
2009
, “
Phase-Contrast Magnetic Resonance Imaging Measurements in Intracranial Aneurysms In Vivo of Flow Patterns, Velocity Fields, and Wall Shear Stress: Comparison With Computational Fluid Dynamics
,”
Magn. Reson. Med.
,
61
(
2
), pp.
409
417
.10.1002/mrm.21861
16.
Karmonik
,
C.
,
Klucznik
,
R.
, and
Benndorf
,
G.
,
2008
, “
Blood Flow in Cerebral Aneurysms: Comparison of Phase Contrast Magnetic Resonance and Computational Fluid Dynamics—Preliminary Experience
,”
RoFo: Fort. Gebiete Rontgenstrahlen Nuklearmedizin
,
180
(
3
), pp.
209
215
.10.1055/s-2008-1027135
17.
Jiang
,
J.
,
Johnson
,
K.
,
Valen-Sendstad
,
K.
,
Mardal
,
K. A.
,
Wieben
,
O.
, and
Strother
,
C.
,
2011
, “
Flow Characteristics in a Canine Aneurysm Model: A Comparison of 4D Accelerated Phase-Contrast MR Measurements and Computational Fluid Dynamics Simulations
,”
Med. Phys.
,
38
(
11
), pp.
6300
6312
.10.1118/1.3652917
18.
Naito
,
T.
,
Miyachi
,
S.
,
Matsubara
,
N.
,
Isoda
,
H.
,
Izumi
,
T.
,
Haraguchi
,
K.
,
Takahashi
,
I.
,
Ishii
,
K.
, and
Wakabayashi
,
T.
,
2012
, “
Magnetic Resonance Fluid Dynamics for Intracranial Aneurysms—Comparison With Computed Fluid Dynamics
,”
Acta Neurochir. (Wien)
,
154
(
6
), pp.
993
1001
.10.1007/s00701-012-1305-5
19.
Isoda
,
H.
,
Ohkura
,
Y.
,
Kosugi
,
T.
,
Hirano
,
M.
,
Alley
,
M. T.
,
Bammer
,
R.
,
Pelc
,
N. J.
,
Namba
,
H.
, and
Sakahara
,
H.
,
2010
, “
Comparison of Hemodynamics of Intracranial Aneurysms Between MR Fluid Dynamics Using 3D Cine Phase-Contrast MRI and MR-Based Computational Fluid Dynamics
,”
Neuroradiology
,
52
(
10
), pp.
913
920
.10.1007/s00234-009-0634-4
20.
van Ooij
,
P.
,
Schneiders
,
J.
,
Marquering
,
H.
,
Majoie
,
C. B.
,
van Bavel
,
E.
, and
Nederveen
,
A.
,
2012
, “
4D Phase Contrast MRI in Intracranial Aneurysms: A Comparison With Patient-Specific Computational Fluid Dynamics With Temporal and Spatial Velocity Boundary Conditions as Measured With 3D Phase Contrast MRI
,”
J. Cardiovasc. Magn. Reson.
,
14
(
Suppl 1
), p.
W3
.10.1186/1532-429X-14-S1-W3
21.
Lee
,
A. T.
,
Pike
,
G. B.
, and
Pelc
,
N. J.
,
1995
, “
Three-Point Phase-Contrast Velocity Measurements With Increased Velocity-to-Noise Ratio
,”
Magn. Reson. Med.
,
33
(
1
), pp.
122
126
.10.1002/mrm.1910330119
22.
Pelc
,
N. J.
,
Herfkens
,
R. J.
,
Shimakawa
,
A.
, and
Enzmann
,
D. R.
,
1991
, “
Phase Contrast Cine Magnetic Resonance Imaging
,”
Magn. Reson. Q.
,
7
(
4
), pp.
229
254
.
23.
Monninghoff
,
C.
,
Maderwald
,
S.
,
Theysohn
,
J. M.
,
Kraff
,
O.
,
Ladd
,
S. C.
,
Ladd
,
M. E.
,
Forsting
,
M.
,
Quick
,
H. H.
, and
Wanke
,
I.
,
2009
, “
Evaluation of Intracranial Aneurysms With 7 T Versus 1.5 T Time-of-Flight MR Angiography—Initial Experience
,”
RoFo: Fort. Gebiete Rontgenstrahlen Nuklearmedizin
,
181
(
1
), pp.
16
23
.10.1055/s-2008-1027863
24.
Stamm
,
A. C.
,
Wright
,
C. L.
,
Knopp
,
M. V.
,
Schmalbrock
,
P.
, and
Heverhagen
,
J. T.
,
2012
, “
Phase Contrast and Time-of-Flight Magnetic Resonance Angiography of the Intracerebral Arteries at 1.5, 3 and 7 T
,”
Magn. Reson. Imaging
,
31
(
4
), pp.
545
549
.10.1016/j.mri.2012.10.023
25.
van Ooij
,
P.
,
Zwanenburg
,
J. J.
,
Visser
,
F.
,
Majoie
,
C. B.
,
vanBavel
,
E.
,
Hendrikse
,
J.
, and
Nederveen
,
A. J.
,
2013
, “
Quantification and Visualization of Flow in the Circle of Willis: Time-Resolved Three-Dimensional Phase Contrast MRI at 7 T Compared With 3 T
,”
Magn. Reson. Med.
,
69
(
3
), pp.
868
876
.10.1002/mrm.24317
26.
Anor
,
T.
,
Grinberg
,
L.
,
Baek
,
H.
,
Madsen
,
J. R.
,
Jayaraman
,
M. V.
, and
Karniadakis
,
G. E.
,
2010
, “
Modeling of Blood Flow in Arterial Trees
,”
WIREs Syst. Biol. Med.
,
2
(
5
), pp.
612
623
.10.1002/wsbm.90
27.
Markl
,
M.
,
Chan
,
F. P.
,
Alley
,
M. T.
,
Wedding
,
K. L.
,
Draney
,
M. T.
,
Elkins
,
C. J.
,
Parker
,
D. W.
,
Wicker
,
R.
,
Taylor
,
C. A.
,
Herfkens
,
R. J.
, and
Pelc
,
N. J.
,
2003
, “
Time-Resolved Three-Dimensional Phase-Contrast MRI
,”
J. Magn. Reson. Imaging
,
17
(
4
), pp.
499
506
.10.1002/jmri.10272
28.
Markl
,
M.
,
Harloff
,
A.
,
Bley
,
T. A.
,
Zaitsev
,
M.
,
Jung
,
B.
,
Weigang
,
E.
,
Langer
,
M.
,
Hennig
,
J.
, and
Frydrychowicz
,
A.
,
2007
, “
Time-Resolved 3D MR Velocity Mapping at 3 T: Improved Navigator-Gated Assessment of Vascular Anatomy and Blood Flow
,”
J. Magn. Reson. Imaging
,
25
(
4
), pp.
824
831
.10.1002/jmri.20871
29.
Bock
,
J.
,
Kreher
,
B. W.
,
Hennig
,
J.
, and
Markl
,
M.
,
2007
, “
Optimized Pre-Processing of Time-Resolved 2D and 3D Phase Contrast MRI Data
,”
Proceedings of the 15th Scientific Meeting. International Society for Magnetic Resonance in Medicine
,
Berlin, Germany
, p.
3138
.
30.
Mönch
,
T.
,
Gasteiger
,
R.
,
Janiga
,
G.
,
Theisel
,
H.
, and
Preim
,
B.
,
2011
, “
Context-Aware Mesh Smoothing for Biomedical Applications
,”
Comput. Graphics
,
35
, pp.
755
767
.10.1016/j.cag.2011.04.011
31.
Neugebauer
,
M.
,
Lawonn
,
K.
,
Beuing
,
O.
, and
Preim
,
B.
,
2013
, “
Automatic Generation of Anatomic Characteristics From Cerebral Aneurysm Surface Models
,”
Int. J. Comput. Assist. Radiol. Surg.
,
8
(
2
), pp.
279
289
.10.1007/s11548-012-0779-1
32.
Berg
,
P.
,
Janiga
,
G.
, and
Thévenin
,
D.
,
2012
, “
Detailed Comparison of Numerical Flow Predictions in Cerebral Aneurysms Using Different CFD Software
,”
Conference on Modelling Fluid Flow
,
J.
Vad
, Ed.,
Budapest, Hungary
, pp.
128
135
.
33.
Janiga
,
G.
,
Berg
,
P.
,
Beuing
,
O.
,
Neugebauer
,
M.
,
Gasteiger
,
R.
,
Preim
,
B.
,
Rose
,
G.
,
Skalej
,
M.
, and
Thévenin
,
D.
,
2013
, “
Recommendations for Accurate Numerical Blood Flow Simulations of Stented Intracranial Aneurysms
,”
Biomed. Eng.
,
58
(3), pp.
303
314
.
34.
Stalder
,
A. F.
,
Russe
,
M. F.
,
Frydrychowicz
,
A.
,
Bock
,
J.
,
Hennig
,
J.
, and
Markl
,
M.
,
2008
, “
Quantitative 2D and 3D Phase Contrast MRI: Optimized Analysis of Blood Flow and Vessel Wall Parameters
,”
Magn. Reson. Med.
,
60
(
5
), pp.
1218
1231
.10.1002/mrm.21778
35.
Pereira
,
V. M.
,
Brina
,
O.
,
Marcos Gonzales
,
A.
,
Narata
,
A. P.
,
Bijlenga
,
P.
,
Schaller
,
K.
,
Lovblad
,
K. O.
, and
Ouared
,
R.
,
2013
, “
Evaluation of the Influence of Inlet Boundary Conditions on Computational Fluid Dynamics for Intracranial Aneurysms: A Virtual Experiment
,”
J. Biomech.
,
46
(
9
), pp.
1531
1539
.10.1016/j.jbiomech.2013.03.024
36.
Rayz
,
V. L.
, and
Berger
,
S. A.
,
2010
, “
Computational Modeling of Vascular Hemodynamics
,”
Computational Modeling in Biomechanics
,
S.
De
,
F.
Guilak
, and
M.
Mofrad
, Eds.,
Springer
,
Berlin
, pp.
171
206
.
37.
Alastruey
,
J.
,
Parker
,
K. H.
,
Peiro
,
J.
,
Byrd
,
S. M.
, and
Sherwin
,
S. J.
,
2007
, “
Modelling the Circle of Willis to Assess the Effects of Anatomical Variations and Occlusions on Cerebral Flows
,”
J. Biomech.
,
40
(
8
), pp.
1794
1805
.10.1016/j.jbiomech.2006.07.008
38.
Li
,
H. Y.
, and
Shen
,
I. F.
,
2006
, “
Similarity Measure for Vector Field Learning
,”
Lect. Notes Comput. Sci.
,
3971
, pp.
436
441
.
39.
Raschi
,
M.
,
Mut
,
F.
,
Byrne
,
G.
,
Putman
,
C. M.
,
Tateshima
,
S.
,
Vinuela
,
F.
,
Tanoue
,
T.
,
Tanishita
,
K.
, and
Cebral
,
J. R.
,
2012
, “
CFD and PIV Analysis of Hemodynamics in a Growing Intracranial Aneurysm
,”
Int. J. Numer. Method. Biomed. Eng.
,
28
(
2
), pp.
214
228
.10.1002/cnm.1459
40.
Zaitsev
,
M.
,
Dold
,
C.
,
Sakas
,
G.
,
Hennig
,
J.
, and
Speck
,
O.
,
2006
, “
Magnetic Resonance Imaging of Freely Moving Objects: Prospective Real-Time Motion Correction Using an External Optical Motion Tracking System
,”
NeuroImage
,
31
(
3
), pp.
1038
1050
.10.1016/j.neuroimage.2006.01.039
41.
Bammer
,
R.
,
Hope
,
T. A.
,
Aksoy
,
M.
, and
Alley
,
M. T.
,
2007
, “
Time-Resolved 3D Quantitative Flow MRI of the Major Intracranial Vessels: Initial Experience and Comparative Evaluation at 1.5 T and 3.0 T in Combination With Parallel Imaging
,”
Magn. Reson. Med.
,
57
(
1
), pp.
127
140
.10.1002/mrm.21109
42.
Valencia
,
A.
,
Ledermann
,
D.
,
Rivera
,
R.
,
Bravo
,
E.
, and
Galvez
,
M.
,
2008
, “
Blood Flow Dynamics and Fluid-Structure Interaction in Patient-Specific Bifurcating Cerebral Aneurysms
,”
Int. J. Numer. Methods Fluids
,
58
(
10
), pp.
1081
1100
.10.1002/fld.1786
43.
Ebbers
,
T.
, and
Farneback
,
G.
,
2009
, “
Improving Computation of Cardiovascular Relative Pressure Fields From Velocity MRI
,”
J. Magn. Reson. Imaging
,
30
(
1
), pp.
54
61
.10.1002/jmri.21775
You do not currently have access to this content.