Robotic prostheses have the potential to significantly improve mobility for people with lower-limb amputation. Humans exhibit complex responses to mechanical interactions with these devices, however, and computational models are not yet able to predict such responses meaningfully. Experiments therefore play a critical role in development, but have been limited by the use of product-like prototypes, each requiring years of development and specialized for a narrow range of functions. Here we describe a robotic ankle–foot prosthesis system that enables rapid exploration of a wide range of dynamical behaviors in experiments with human subjects. This emulator comprises powerful off-board motor and control hardware, a flexible Bowden cable tether, and a lightweight instrumented prosthesis, resulting in a combination of low mass worn by the human (0.96 kg) and high mechatronic performance compared to prior platforms. Benchtop tests demonstrated closed-loop torque bandwidth of 17 Hz, peak torque of 175 Nm, and peak power of 1.0 kW. Tests with an anthropomorphic pendulum “leg” demonstrated low interference from the tether, less than 1 Nm about the hip. This combination of low worn mass, high bandwidth, high torque, and unrestricted movement makes the platform exceptionally versatile. To demonstrate suitability for human experiments, we performed preliminary tests in which a subject with unilateral transtibial amputation walked on a treadmill at 1.25 ms-1 while the prosthesis behaved in various ways. These tests revealed low torque tracking error (RMS error of 2.8 Nm) and the capacity to systematically vary work production or absorption across a broad range (from −5 to 21 J per step). These results support the use of robotic emulators during early stage assessment of proposed device functionalities and for scientific study of fundamental aspects of human–robot interaction. The design of simple, alternate end-effectors would enable studies at other joints or with additional degrees of freedom.

References

References
1.
Ziegler-Graham
,
K.
,
MacKenzie
,
E. J.
,
Ephraim
,
P. L.
,
Travison
,
T. G.
, and
Brookmeyer
,
R.
,
2008
, “
Estimating the Prevalence of Limb Loss in the United States: 2005 to 2050
,”
Arch. Phys. Med. Rehab.
,
89
, pp.
422
429
.10.1016/j.apmr.2007.11.005
2.
Ralston
,
H. J.
,
1958
, “
Energy-Speed Relation and Optimal Speed During Level Walking
,”
Int. Z. Angew. Phys.
,
17
, pp.
277
283
.
3.
Skinner
,
H. B.
, and
Effeney
,
D. J.
,
1985
, “
Gait Analysis in Amputees
,”
Am. J. Phys. Med.
,
64
(
2
), pp.
82
89
.
4.
Lehmann
,
J. F.
,
Price
,
R.
,
Boswell-Bassette
,
S.
,
Dralle
,
A.
,
Questad
,
K.
, and
DeLateur
,
B. J.
,
1993
, “
Comprehensive Analysis of Energy Storing Prosthetic Feet: Flex Foot and Seattle Foot Versus Standard Sach Foot
,”
Arch. Phys. Med. Rehab.
,
74
, pp.
1225
1231
.
5.
Torburn
,
L.
,
Powers
,
C. M.
,
Guiterrez
,
R.
, and
Perry
,
J.
,
1995
, “
Energy Expenditure During Ambulation in Dysvascular and Traumatic Below-Knee Amputees: A Comparison of Five Prosthetic Feet
,”
J. Rehab. Res. Dev.
,
32
, pp.
111
119
.
6.
Hoffman
,
M. D.
,
Sheldahl
,
L. M.
,
Buley
,
K. J.
, and
Sandford
,
P. R.
,
1997
, “
Physiological Comparison of Walking Among Bilateral Above-Knee Amputee and Able-Bodied Subjects, and a Model to Account for the Differences in Metabolic Cost
,”
Arch. Phys. Med. Rehab.
,
78
, pp.
385
392
.10.1016/S0003-9993(97)90230-6
7.
Waters
,
R. L.
, and
Mulroy
,
S.
,
1999
, “
The Energy Expenditure of Normal and Pathologic Gait
,”
Gait Posture
,
9
, pp.
207
231
.10.1016/S0966-6362(99)00009-0
8.
Hagberg
,
K.
, and
Brånemark
,
R.
,
2001
, “
Consequences of Non-Vascular Trans-Femoral Amputation: A Survey of Quality of Life, Prosthesis Use and Problems
,”
Prosthet. Orthot. Int.
,
25
, pp.
186
194
.10.1080/03093640108726601
9.
Miller
,
W. C.
,
Speechley
,
M.
, and
Deathe
,
A. B.
,
2002
, “
Balance Confidence Among People With Lower Limb Amputation
,”
Phys. Therapy
,
82
, pp.
856
865
.
10.
Hsu
,
M. J.
,
Nielsen
,
D. H.
,
Lin-Chan
,
S. J.
, and
Shurr
,
D.
,
2006
, “
The Effects of Prosthetic Foot Design on Physiologic Measurements, Self-Selected Walking Velocity, and Physical Activity in People With Transtibial Amputation
,”
Arch. Phys. Med. Rehab.
,
87
, pp.
123
129
.10.1016/j.apmr.2005.07.310
11.
Silverman
,
A. K.
,
Fey
,
N. P.
,
Portillo
,
A.
,
Walden
,
J. G.
,
Bosker
,
G.
, and
Neptune
,
R. R.
,
2008
, “
Compensatory Mechanisms in Below-Knee Amputee Gait in Response to Increasing Steady-State Walking Speeds
,”
Gait Posture
,
28
, pp.
602
609
.10.1016/j.gaitpost.2008.04.005
12.
Zidarov
,
D.
,
Swaine
,
B.
, and
Gauthier-Gagnon
,
C.
,
2009
, “
Quality of Life of Persons With Lower-Limb Amputation During Rehabilitation and at 3-Month Follow-Up
,”
Arch. Phys. Med. Rehab.
,
90
(
4
), pp.
634
645
.10.1016/j.apmr.2008.11.003
13.
Morgenroth
,
D. C.
,
Segal
,
A. D.
,
Zelik
,
K. E.
,
Czerniecki
,
J. M.
,
Klute
,
G. K.
,
Adamczyk
,
P. G.
,
Orendurff
,
M. S.
,
Hahn
,
M. E.
,
Collins
,
S. H.
, and
Kuo
,
A. D.
,
2012
, “
The Effect of Prosthetic Foot Push-Off on Mechanical Loading Associated With Knee Osteoarthritis in Lower Extremity Amputees
,”
Gait Posture
,
34
(
4
), pp.
502
507
.10.1016/j.gaitpost.2011.07.001
14.
Au
,
S. K.
,
Weber
,
J.
, and
Herr
,
H.
,
2007
, “
Biomechanical Design of a Powered Ankle–Foot Prosthesis
,”
Proceedings of the IEEE International Conference on Rehabilitation Robotics (ICORR)
, pp.
298
303
.
15.
Hitt
,
J.
,
Oymagil
,
A. M.
,
Sugar
,
T.
,
Hollander
,
K.
,
Boehler
,
A.
, and
Fleeger
,
J.
,
2007
, “
Dynamically Controlled Ankle–Foot Orthosis (DCO) With Regenerative Kinetics: Incrementally Attaining User Portability
,”
Proceedings of the IEEE International Conference on Robotics and Automation (ICRA)
, pp.
1541
1546
.
16.
Sup
,
F.
,
Varol
,
H. A.
,
Mitchell
,
J.
,
Withrow
,
T. J.
, and
Goldfarb
,
M.
,
2009
, “
Self-Contained Powered Knee and Ankle Prosthesis: Initial Evaluation on a Transfemoral Amputee
,”
Proceedings of the IEEE International Conference on Rehabilitation Robotics (ICORR)
, pp.
638
644
.
17.
Zelik
,
K. E.
,
Collins
,
S. H.
,
Adamczyk
,
P. G.
,
Segal
,
A. D.
,
Klute
,
G. K.
,
Morgenroth
,
D. C.
,
Hahn
,
M. E.
,
Orendurff
,
M. S.
,
Czerniecki
,
J. M.
, and
Kuo
,
A. D.
,
2011
, “
Systematic Variation of Prosthetic Foot Parameter Affects Center-of-Mass Mechanics and Metabolic Cost During Walking
,”
IEEE Trans. Neural Syst. Rehab. Eng.
,
19
, pp.
411
419
.10.1109/TNSRE.2011.2159018
18.
Cherelle
,
P.
,
Matthys
,
A.
,
Grosu
,
V.
,
Vanderborght
,
B.
, and
Lefeber
,
D.
,
2012
, “
Mimicking Intact Ankle Behavior With a Powered Transtibial Prosthesis
,”
Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society
, pp.
544
549
.
19.
Segal
,
A. D.
,
Zelik
,
K. E.
,
Klute
,
G. K.
,
Morgenroth
,
D. C.
,
Hahn
,
M. E.
,
Orendurff
,
M. S.
,
Adamczyk
,
P. G.
,
Collins
,
S. H.
,
Kuo
,
A. D.
, and
Czerniecki
,
J. M.
,
2012
, “
The Effects of a Controlled Energy Storage and Return Prototype Prosthetic Foot on Transtibial Amputee Ambulation
,”
Human Movement Sci.
,
31
, pp.
918
931
.10.1016/j.humov.2011.08.005
20.
Herr
,
H. M.
, and
Grabowski
,
A. M.
,
2012
, “
Bionic Ankle–Foot Prosthesis Normalizes Walking Gait for Persons With Leg Amputation
,”
Proc. R. Soc. London B
,
279
, pp.
457
464
.10.1098/rspb.2011.1194
21.
Collins
,
S. H.
, and
Kuo
,
A. D.
,
2010
, “
Recycling Energy to Restore Impaired Ankle Function During Human Walking
,”
PLoS One
,
5
, p.
e9307
.10.1371/journal.pone.0009307
22.
Madden
,
J. D.
,
2007
, “
Mobile Robots: Motor Challenges and Materials Solutions
,”
Science
,
318
, pp.
1094
1097
.10.1126/science.1146351
23.
Anderson
,
F. C.
, and
Pandy
,
M. G.
,
2001
, “
Dynamic Optimization of Human Walking
,”
ASME J. Biomech. Eng.
,
123
(
5
), pp.
381
390
.10.1115/1.1392310
24.
Srinivasan
,
M.
, and
Ruina
,
A.
,
2006
, “
Computer Optimization of a Minimal Biped Model Discovers Walking and Running
,”
Nature
,
439
(
4
), pp.
72
75
.10.1038/nature04113
25.
Song
,
S.
, and
Geyer
,
H.
,
2012
, “
Regulating Speed and Generating Large Speed Transitions in a Neuromuscular Human Walking Model
,”
Proceedings of the IEEE International Conference on Robotics and Automation (ICRA)
, pp.
511
516
.
26.
Adamczyk
,
P. G.
,
Collins
,
S. H.
, and
Kuo
,
A. D.
,
2006
, “
The Advantages of a Rolling Foot in Human Walking
,”
J. Exp. Biol.
,
209
, pp.
3953
3962
.10.1242/jeb.02455
27.
Fregly
,
B. J.
,
Besier
,
T. F.
,
Lloyd
,
D. G.
,
Delp
,
S. L.
,
Banks
,
S. A.
,
Pandy
,
M. G.
, and
D'Lima
,
D. D.
,
2012
, “
Grand Challenge Competition to Predict in vivo Knee Loads
,”
J. Orthopaed. Res.
,
30
(
4
), pp.
503
513
.10.1002/jor.22023
28.
Hirtz
,
J.
,
Stone
,
R. B.
,
McAdams
,
D. A.
,
Szykman
,
S.
, and
Wood
,
K. L.
,
2002
, “
A Functional Basis for Engineering Design: Reconciling and Evolving Previous Efforts
,”
Res. Eng. Design
,
13
(
2
), pp.
65
82
.
29.
Pratt
,
J. E.
,
Krupp
,
B. T.
,
Morse
,
C. J.
, and
Collins
,
S. H.
,
2004
, “
The Roboknee: An Exoskeleton for Enhancing Strength and Endurance During Walking
,”
Proceedings of the IEEE International Conference on Robotics and Automation (ICRA)
, pp.
2430
2435
.
30.
Andersen
,
J. B.
, and
Sinkjær
,
T.
,
1995
, “
An Actuator System for Investigating Electrophysiological and Biomechanical Features Around the Human Ankle Joint During Gait
,”
IEEE Trans. Rehab. Eng.
,
3
(
4
), pp.
299
306
.10.1109/86.481969
31.
Veneman
,
J. F.
,
Kruidhof
,
R.
,
Hekman
,
E. E. G.
,
Ekkelenkamp
,
R.
,
van Asseldonk
,
E. H. F.
, and
van der Kooij
,
H.
,
2007
, “
Design and Evaluation of the LOPES Exoskeleton Robot for Interactive Gait Rehabilitation
,”
IEEE Trans. Neural Syst. Rehab. Eng.
,
15
(
3
), pp.
379
386
.10.1109/TNSRE.2007.903919
32.
Sulzer
,
J. S.
,
Roiz
,
R. A.
,
Peshkin
,
M. A.
, and
Patton
,
J. L.
,
2009
, “
A Highly Backdrivable, Lightweight Knee Actuator for Investigating Gait in Stroke
,”
IEEE Trans. Robotics
,
25
(
3
), pp.
539
548
.10.1109/TRO.2009.2019788
33.
Sawicki
,
G. S.
, and
Ferris
,
D. P.
,
2008
, “
Mechanics and Energetics of Level Walking With Powered Ankle Exoskeletons
,”
J. Exp. Biol.
,
211
(
9
), pp.
1402
1413
.10.1242/jeb.009241
34.
Bruijn
,
S. M.
,
Meijer
,
O. G.
,
Beek
,
P. J.
, and
van Dieën
,
J. H.
,
2010
, “
The Effects of Arm Swing on Human Gait Stability
,”
J. Exp. Biol.
,
213
, pp.
3945
3952
.10.1242/jeb.045112
35.
Flowers
,
W. C.
, and
Mann
,
R. W.
,
1977
, “
An Electrohydraulic Knee-Torque Controller for a Prosthesis Simulator
,”
ASME J. Biomech. Eng.
,
99
(
1
), pp.
3
9
.10.1115/1.3426266
36.
Abul-Haj
,
C.
, and
Hogan
,
N.
,
1987
, “
An Emulator System for Developing Improved Elbow-Prosthesis Designs
,”
IEEE Trans. Biomed. Eng.
,
34
(
9
), pp.
724
737
.10.1109/TBME.1987.325997
37.
Ellis
,
R. E.
,
Ismaeil
,
O. M.
, and
Lipsett
,
M. G.
,
1996
, “
Design and Evaluation of a High-Performance Haptic Interface
,”
Robotica
,
4
, pp.
321
327
.10.1017/S0263574700019639
38.
Hidler
,
J.
,
Nichols
,
D.
,
Pelliccio
,
M.
,
Brady
,
K.
,
Campbell
,
D. D.
,
Kahn
,
J. H.
, and
Hornby
,
T. G.
,
2009
, “
Multicenter Randomized Clinical Trial Evaluating the Effectiveness of the Lokomat in Subacute Stroke
,”
Neurorehab. Neural Repair
,
23
(
1
), pp.
5
13
.10.1177/1545968308326632
39.
Griffiths
,
P. G.
,
Gillespie
,
R. B.
, and
Freudenberg
,
J. S.
,
2011
, “
A Fundamental Linear Systems Conflict Between Performance and Passivity in Haptic Rendering
,”
IEEE Trans. Robotics
,
27
(
1
), pp.
75
88
.10.1109/TRO.2010.2088751
40.
Browning
,
R. C.
,
Modica
,
J. R.
,
Kram
,
R.
, and
Goswami
,
A.
,
2007
, “
The Effects of Adding Mass to the Legs on the Energetics and Biomechanics of Walking
,”
Med. Sci. Sports Exercise
,
39
(
3
), pp.
515
525
.10.1249/mss.0b013e31802b3562
41.
Gordon
,
K. E.
,
Sawicki
,
G. S.
, and
Ferris
,
D. P.
,
2006
, “
Mechanical Performance of Artificial Pneumatic Muscles to Power an Ankle–Foot Orthosis
,”
J. Biomech.
,
39
, pp.
1832
1841
.10.1016/j.jbiomech.2005.05.018
42.
Whittle
,
M.
,
1996
,
Gait Analysis: An Introduction
,
Butterworth-Heinemann
,
Oxford, UK
.
43.
Pratt
,
G.
, and
Williamson
,
M.
,
1995
, “
Series Elastic Actuators
,”
Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)
.
44.
Wyeth
,
G.
,
2006
, “
Control Issues for Velocity Sourced Series Elastic Actuators
,”
Proceedings of the Australasian Conference on Robotics and Automation
.
45.
Hawes
,
M. R.
, and
Sovak
,
D.
,
1994
, “
Quantitative Morphology of the Human Foot in a North American Population
,”
Ergonomics
,
37
(
7
), pp.
1213
1226
.10.1080/00140139408964899
46.
Winter
,
D. A.
,
1990
,
Biomechanics and Motor Control of Human Movement
,
2nd ed.
,
John Wiley and Sons
,
Toronto, Canada
.
47.
Eilenberg
,
M. F.
, and
Geyer
,
H.
,
2010
, “
Control of a Powered Ankle–Foot Prosthesis Based on a Neuromuscular Model
,”
IEEE Trans. Neural Syst. Rehab. Eng.
,
18
(
2
), pp.
164
173
.10.1109/TNSRE.2009.2039620
48.
Aoyagi
,
D.
,
Ichinose
,
W. E.
,
Harkema
,
S. J.
,
Reinkensmeyer
,
D. J.
, and
Bobrow
,
J. E.
,
2007
, “
A Robot and Control Algorithm That Can Synchronously Assist in Naturalistic Motion During Body-Weight-Supported Gait Training Following Neurologic Injury
,”
IEEE Trans. Neural Syst. Rehab. Eng.
,
15
(
3
), pp.
387
400
.10.1109/TNSRE.2007.903922
49.
Caputo
,
J. M.
, and
Collins
,
S. H.
,
2013
, “
An Experimental Robotic Testbed for Accelerated Development of Ankle Prostheses
,”
Proceedings of the IEEE International Conference on Robotics and Automation (ICRA)
, pp.
2630
2635
.
50.
Su
,
J. L.
, and
Dingwell
,
J. B.
,
2007
, “
Dynamic Stability of Passive Dynamic Walking on an Irregular Surface
,”
ASME J. Biomech. Eng.
,
129
(
6
), pp.
802
810
.10.1115/1.2800760
51.
Snaterse
,
M.
,
Ton
,
R.
,
Kuo
,
A. D.
, and
Donelan
,
J. M.
,
2011
, “
Distinct Fast and Slow Processes Contribute to the Selection of Preferred Step Frequency During Human Walking
,”
J. Appl. Physiol.
,
110
(
6
), pp.
1682
1690
.10.1152/japplphysiol.00536.2010
52.
Collins
,
S. H.
, and
Jackson
,
R.
,
2013
, “
Inducing Self-Selected Human Engagement in Robotic Locomotion Training
,”
Proceedings of the International Conference on Rehabilitation Robotics (ICORR)
, pp.
1
6
.
53.
Roy
,
A.
,
Krebs
,
H. I.
,
Williams
,
D. J.
,
Bever
,
C. T.
,
Forrester
,
L. W.
,
Macko
,
R. M.
, and
Hogan
,
N.
,
2009
, “
Robot-Aided Neurorehabilitation: A Novel Robot for Ankle Rehabilitation
,”
IEEE Trans. Robotics
,
25
, pp.
569
582
.10.1109/TRO.2009.2019783
54.
Burse
,
R. L.
, and
Pandolf
,
K. B.
,
1979
, “
Physical Conditioning of Sedentary Young Men With Ankle Weights During Working Hours
,”
Ergonomics
,
22
, pp.
69
78
.10.1080/00140137908924590
55.
Hitt
,
J.
,
Sugar
,
T.
,
Holgate
,
M.
,
Bellman
,
R.
, and
Hollander
,
K.
,
2009
, “
Robotic Transtibital Prosthesis With Biomechanical Energy Regeneration
,”
Ind. Robot Int. J.
,
36
(
5
), pp.
441
447
.10.1108/01439910910980169
56.
Bawa
,
P.
, and
Stein
,
R. B.
,
1976
, “
Frequency Response of Human Soleus Muscle
,”
J. Neurophysiol.
,
39
(
4
), pp.
788
793
.
57.
Agarwal
,
G. C.
, and
Gottlieb
,
G. L.
,
1977
, “
Oscillation of the Human Ankle Joint in Response to Applied Sinusoidal Torque on the Foot
,”
J. Physiol.
,
268
, pp.
151
176
.
58.
Noël
,
M.
,
Cantin
,
B.
,
Lambert
,
S.
,
Gosselin
,
C. M.
, and
Bouyer
,
L. J.
,
2008
, “
An Electrohydraulic Actuated Ankle Foot Orthosis to Generate Force Fields and to Test Proprioceptive Reflexes During Human Walking
,”
IEEE Trans. Neural Syst. Rehab. Eng.
,
16
, pp.
390
399
.10.1109/TNSRE.2008.926714
59.
Stienen
,
A. H. A.
,
Hekman
,
E. E. G.
,
ter Braak
,
H.
,
Aalsma
,
A. M. M.
,
van der Helm
,
F. C. T.
, and
van der Kooij
,
H.
,
2010
, “
Design of a Rotational Hydroelastic Actuator for a Powered Exoskeleton for Upper Limb Rehabilitation
,”
IEEE Trans. Biomed. Eng.
,
57
, pp.
728
735
.10.1109/TBME.2009.2018628
60.
Winter
,
D. A.
,
1991
,
The Biomechanics and Motor Control of Human Gait: Normal, Elderly and Pathological, Waterloo Biomechanics
, Waterloo, Canada.
61.
Pratt
,
J.
,
Krupp
,
B.
, and
Morse
,
C.
,
2002
, “
Series Elastic Actuators for High Fidelity Force Control
,”
Ind. Robot Int. J.
,
29
, pp.
234
241
.10.1108/01439910210425522
62.
Schiele
,
A.
,
Letier
,
P.
,
van der Linde
,
R.
, and
van der Helm
,
F.
,
2006
, “
Bowden Cable Actuator for Force-Feedback Exoskeletons
,”
Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)
, pp.
3599
3604
.
63.
Zoss
,
A.
,
Kazerooni
,
H.
, and
Chu
,
A.
,
2005
, “
On the Mechanical Design of the Berkeley Lower Extremity Exoskeleton (BLEEX)
,”
Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)
, pp.
3465
3472
.
64.
Stephens
,
B. J.
, and
Atkeson
,
C. G.
,
2010
, “
Dynamic Balance Force Control for Compliant Humanoid Robots
,”
Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)
, pp.
1248
1255
.
65.
Versluys
,
R.
,
Deckers
,
K.
,
Van Damme
,
M.
,
Van Ham
,
R.
,
Steenackers
,
G.
,
Guillaume
,
P.
, and
Lefeber
,
D.
,
2009
, “
A Study on the Bandwidth Characteristics of Pleated Pneumatic Artificial Muscles
,”
Appl. Bionics Biomech.
,
6
(
1
), pp.
3
9
.10.1080/11762320902738647
66.
Versluys
,
R.
,
Desomer
,
A.
,
Lenaerts
,
G.
,
Pareit
,
O.
,
Vanderborght
,
B.
,
Perre
,
G.
,
Peeraer
,
L.
, and
Lefeber
,
D.
,
2009
, “
A Biomechatronical Transtibial Prosthesis Powered by Pleated Pneumatic Artificial Muscles
,”
Int. J. Model. Ident. Control
,
4
(
4
), pp.
394
405
.10.1504/IJMIC.2008.021479
67.
Schiele
,
A.
,
2008
, “
Performance Difference of Bowden Cable Relocated and Non-Relocated Master Actuators in Virtual Environment Applications
,”
Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)
, pp.
3507
3512
.
68.
Budynas
,
R. G.
, and
Nisbett
,
J. K.
,
2011
,
Shigley's Mechanical Engineering Design
,
9th ed.
McGraw-Hill
,
New York
.
69.
Gordon Composites, Inc.
,
2012
,
GC-67-UB: Unidirectional Fiberglass Bar Stock
, August 2012, URL: http://www.gordoncomposites.com/.
You do not currently have access to this content.