Various techniques exist for quantifying articular contact stress distributions, an important class of measurements in the field of orthopaedic biomechanics. In situations where the need for dynamic recording has been paramount, the approach of preference has involved thin-sheet multiplexed grid-array transducers. To date, these sensors have been used to study contact stresses in the knee, shoulder, ankle, wrist, and spinal facet joints. Until now, however, no such sensor had been available for the human hip joint due to difficulties posed by the deep, bi-curvilinear geometry of the acetabulum. We report here the design and development of a novel sensor capable of measuring dynamic contact stress in human cadaveric hip joints (maximum contact stress of 20 MPa and maximum sampling rate 100 readings/s). Particular emphasis is placed on issues concerning calibration, and on the effect of joint curvature on the sensor's performance. The active pressure-sensing regions of the sensors have the shape of a segment of an annulus with a 150-deg circumferential span, and employ a polar/circumferential “ring-and-spoke” sensel grid layout. There are two sensor sizes, having outside radii of 44 and 48 mm, respectively. The new design was evaluated in human cadaver hip joints using two methods. The stress magnitudes and spatial distribution measured by the sensor were compared to contact stresses measured by pressure sensitive film during static loading conditions that simulated heel strike during walking and stair climbing. Additionally, the forces obtained by spatial integration of the sensor contact stresses were compared to the forces measured by load cells during the static simulations and for loading applied by a dynamic hip simulator. Stress magnitudes and spatial distribution patterns obtained from the sensor versus from pressure sensitive film exhibited good agreement. The joint forces obtained during both static and dynamic loading were within ±10% and ±26%, respectively, of the forces measured by the load cells. These results provide confidence in the measurements obtained by the sensor. The new sensor's real-time output and dynamic measurement capabilities hold significant advantages over static measurements from pressure sensitive film.

References

References
1.
Brand
,
R. A.
,
2005
, “
Joint Contact Stress: A Reasonable Surrogate for Biological Processes?
,”
Iowa Orthop. J.
,
25
, pp.
82
94
.
2.
Brown
,
T. D.
,
Rudert
,
M. J.
, and
Grosland
,
N. M.
,
2004
, “
New Methods for Assessing Cartilage Contact Stress After Articular Fracture
,”
Clin. Orthop. Relat. Res.
,
423
, pp.
52
58
.10.1097/01.blo.0000132633.38338.8b
3.
Ashruf
,
C. M. A.
,
2002
, “
Thin Flexible Pressure Sensors
,”
Sensor Rev.
,
22
(
4
), pp.
322
327
.10.1108/02602280210444636
4.
Tekscan, 2012, I-Scan Pressure Measurement System User's Manual, Version 7.0.
5.
Otto
,
J. K.
,
Brown
,
T. D.
, and
Callaghan
,
J. J.
,
1999
, “
Static and Dynamic Response of a Multiplexed-Array Piezoresistive Contact Sensor
,”
Exp. Mech.
,
39
pp.
317
323
.10.1007/BF02329811
6.
Tekscan, 2012. Available at
http://
www.tekscan.com/industrial/catalog.html
7.
Rudert
,
M. J.
,
Ellis
,
B. J.
,
Henak
,
C. R.
,
Stroud
,
N. J.
,
Weiss
,
J. A.
, and
Brown
,
T. D.
,
2011
, “
A New Sensor for Measurement of Dynamic Contact Pressure in the Hip
,” Orthopaedic Research Society Meeting, Abstract ID 936571.
8.
Harris
,
M. D.
,
Anderson
,
A. E.
,
Henak
,
C. R.
,
Ellis
,
B. J.
,
Peters
,
C. L.
, and
Weiss
,
J. A.
,
2012
, “
Finite Element Prediction of Cartilage Contact Stresses in Normal Human Hips
,”
J. Orthop. Res.
,
30
(
7
), pp.
1133
1139
.10.1002/jor.22040
9.
Anderson
,
A. E.
,
Ellis
,
B. J.
,
Maas
,
S. A.
,
Peters
,
C. L.
, and
Weiss
,
J. A.
,
2008
, “
Validation of Finite Element Predictions of Cartilage Contact Pressure in the Human Hip Joint
,”
ASME J. Biomech. Eng.
,
130
(
5
), p.
051008
.10.1115/1.2953472
10.
Anderson
,
A. E.
,
Ellis
,
B. J.
,
Maas
,
S. A.
, and
Weiss
,
J. A.
,
2010
, “
Effects of Idealized Joint Geometry on Finite Element Predictions of Cartilage Contact Stresses in the Hip
,”
J. Biomech.
,
43
(
7
), pp.
1351
1357
.10.1016/j.jbiomech.2010.01.010
11.
Gu
,
D. Y.
,
Hu
,
F.
,
Wei
,
J. H.
,
Dai
,
K. R.
, and
Chen
,
Y. Z.
,
2011
, “
Contributions of Non-Spherical Hip Joint Cartilage Surface to Hip Joint Contact Stress
,”
Conf. Proc. IEEE Eng. Med. Biol. Soc.
, pp.
8166
8169
.
12.
Hartmann
,
J. M.
,
Rudert
,
M. J.
,
Pedersen
,
D. R.
,
Baer
,
T. A.
,
Goreham-Voss
,
C. M.
, and
Brown
,
T. D.
,
2009
, “
Compliance-Dependent Load Allocation Between Sensing Versus Non-Sensing Portions of a Sheet-Array Contact Stress Sensor
,”
Iowa Orthop. J.
,
29
, pp.
43
47
.
13.
Li
,
W.
,
Anderson
,
D. D.
,
Goldsworthy
,
J. K.
,
Marsh
,
J. L.
, and
Brown
,
T. D.
,
2008
, “
Patient-Specific Finite Element Analysis of Chronic Contact Stress Exposure After Intraarticular Fracture of the Tibial Plafond
,”
J. Orthop. Res.
,
26
(
8
) pp.
1039
1045
.10.1002/jor.20642
14.
McKinley
,
T. O.
,
Rudert
,
M. J.
,
Koos
,
D. C.
,
Pedersen
,
D. R.
,
Baer
,
T. E.
,
Tochigi
,
Y.
, and
Brown
,
T. D.
,
2006
, “
Contact Stress Transients During Functional Loading of Ankle Stepoff Incongruities
,”
J. Biomech.
39
(
4
) pp.
617
626
.10.1016/j.jbiomech.2005.01.036
15.
McKinley
,
T. O.
,
Tochigi
,
Y.
,
Rudert
,
M. J.
, and
Brown
,
T. D.
,
2008
, “
The Effect of Incongruity and Instability on Contact Stress Directional Gradients in Human Cadaveric Ankles
,”
Osteoarth. Cartilage
,
16
(
11
) pp.
1363
1369
.10.1016/j.joca.2008.04.005
16.
McKinley
,
T. O.
,
Tochigi
,
Y.
,
Rudert
,
M. J.
, and
Brown
,
T. D.
,
2008
, “
Instability-Associated Changes in Contact Stress and Contact Stress Rates Near a Step-Off Incongruity
,”
J. Bone Jt. Surg., Am. Vol.
,
90
(
2
) pp.
375
383
.10.2106/JBJS.G.00127
17.
Tochigi
,
Y.
,
Rudert
,
M.
,
Saltzman
,
C.
,
Amendola
,
A.
, and
Brown
,
T.
,
2006
, “
Contribution of Articular Surface Geometry to Ankle Stabilization
,”
J. Bone Jt. Surg., Am. Vol.
,
88
, pp.
2704
2713
.10.2106/JBJS.E.00758
18.
Bergmann
,
G.
,
Deuretzbacher
,
G.
,
Heller
,
M.
,
Graichen
,
F.
,
Rohlmann
,
A.
,
Strauss
,
J.
, and
Duda
,
G. N.
,
2001
, “
Hip Contact Forces and Gait Patterns From Routine Activities
,”
J. Biomech.
,
34
, pp.
859
871
.10.1016/S0021-9290(01)00040-9
19.
Stroud
,
N. J.
,
2010
, “
Advancements of a Servohydraulic Human Hip Joint Motion Simulator for Experimental Investigation of Hip Joint Impingement/Dislocation
,” M. S. thesis, Department of Biomedical Engineering, The University of Iowa.
20.
Kang
,
L.
,
Baer
,
T. E.
,
Rudert
,
M. J.
,
Pedersen
,
D. R.
, and
Brown
,
T. D.
,
2010
, “
Traveling-Load Calibration of Grid-Array Transient Contact Stress Sensors
,”
J. Biomech.
,
43
(
11
), pp.
2237
2240
.10.1016/j.jbiomech.2010.04.013
You do not currently have access to this content.