Bone sawing is widely used in orthognathic surgery to correct maxillary deformities. Successful execution of bone sawing requires a high level of dexterity and experience. A virtual reality (VR) surgical simulator can provide a safe, cost-effective, and repeatable training method. In this study, we developed a VR training simulator with haptic functions to simulate bone-sawing force, which was generated by the experimental force model. Ten human skulls were obtained in this study for the determination of surgical bone-sawing force. Using a 5-DOF machining center and a micro-reciprocating saw, bone specimens with different bone density were sawed at different feed rates (20, 40, and 60 mm/min) and spindle speeds (9800, 11,200 and 12,600 cycles per minute). The sawing forces were recorded with a piezoelectric dynamometer and a signal acquisition system. Linear correlation analysis of all experimental data indicates that there were significant positive linear correlations between bone-sawing force and bone density and tool feed rate and a moderate negative linear correlation with tool spindle rate. By performing multiple regression analysis, the prediction models for the bone-sawing procedure were determined. By employing Omega.6 as a haptic device, a medical simulator for the Lefort I osteotomy was developed based on an experimental force model. Comparison of the force-time curve acquired through experiments and the curve computed from the simulator indicate that the obtained forces based on the experimental force model and the acquired data had the same trend for the bone-sawing procedure of orthognathic surgery.

References

References
1.
Bishara
,
S. E.
,
Ortho
,
D.
,
Chu
,
G. W.
, and
Jakobsen
,
J. R.
,
1988
, “
Stability of the LeFort I One-Piece Maxillary Osteotomy
,”
Am. J. Orthod. Dentofacial Orthop.
,
94
(
3
), pp.
184
200
.10.1016/0889-5406(88)90027-3
2.
Coles
,
T. R.
,
Meglan
,
D.
, and
John
,
N. W.
,
2011
, “
The Role of Haptics in Medical Training Simulators: A Survey of the State of the Art
,”
IEEE Trans. Haptics
,
4
(
1
), pp.
51
66
.10.1109/TOH.2010.19
3.
Hamza-Lup
,
F. G.
,
Bogdan
,
C. M.
,
Popovici
,
D. M.
, and
Costea
,
O. D.
, “
A Survey of Visuo-Haptic Simulation in Surgical Training
,”
Proc. eLmL 2011, The Third International Conference on Mobile, Hybrid, and On-Line Learning
, pp.
57
62
.
4.
Haluck
,
R. S.
,
Marshall
,
R. L.
,
Krummel
,
T. M.
, and
Melkonian
,
M. G.
,
2001
, “
Are Surgery Training Programs Ready for Virtual Reality? A Survey of Program Directors in General Surgery
,”
J. Am. Coll. Surg.
,
193
(
6
), pp.
660
665
.10.1016/S1072-7515(01)01066-3
5.
Morris
,
D.
,
Sewell
,
C.
,
Blevins
,
N.
,
Barbagli
,
F.
, and
Salisbury
,
K.
,
2004
, “
A Collaborative Virtual Environment for the Simulation of Temporal Bone Surgery
,”
Medical Image Computing and Computer-Assisted Intervention–MICCAI 2004
, pp.
319
327
.
6.
Morris
,
D.
,
Sewell
,
C.
,
Barbagli
,
F.
,
Salisbury
,
K.
,
Blevins
,
N. H.
, and
Girod
,
S.
,
2006
, “
Visuohaptic Simulation of Bone Surgery for Training and Evaluation
,”
IEEE Comput. Graphics Appl.
,
26
(
6
), pp.
48
57
.10.1109/MCG.2006.140
7.
Kusumoto
,
N.
,
Sohmura
,
T.
,
Yamada
,
S.
,
Wakabayashi
,
K.
,
Nakamura
,
T.
, and
Yatani
,
H.
,
2006
, “
Application of Virtual Reality Force Feedback Haptic Device for Oral Implant Surgery
,”
Clin. Oral Implants Res.
,
17
(
6
), pp.
708
713
.10.1111/j.1600-0501.2006.01218.x
8.
Arbabtafti
,
M.
,
Moghaddam
,
M.
,
Nahvi
,
A.
,
Mahvash
,
M.
,
Richardson
,
B.
, and
Shirinzadeh
,
B.
,
2011
, “
Physics-Based Haptic Simulation of Bone Machining
,”
IEEE Trans, Haptics
,
4
(
1
), pp.
39
50
.10.1109/TOH.2010.5
9.
Tsai
,
M. D.
,
Hsieh
,
M. S.
, and
Tsai
,
C. H.
,
2007
, “
Bone Drilling Haptic Interaction for Orthopedic Surgical Simulator
,”
Comput. Biol. Med.
,
37
(
12
), pp.
1709
1718
.10.1016/j.compbiomed.2007.04.006
10.
Vankipuram
,
M.
,
Kahol
,
K.
,
McLaren
,
A.
, and
Panchanathan
,
S.
,
2010
, “
A Virtual Reality Simulator for Orthopedic Basic Skills: A Design and Validation Study
,”
J. Biomed. Inf.
,
43
(
5
), pp.
661
668
.10.1016/j.jbi.2010.05.016
11.
Wang
,
Q.
,
Chen
,
H.
,
Wu
,
W.
,
Qin
,
J.
, and
Heng
,
P.
,
2012
, “
Impulse-Based Rendering Methods for Haptic Simulation of Bone-Burring
,”
IEEE Trans. Haptics
,
5
(
4
), pp.
344
355
.10.1109/TOH.2011.69
12.
Sohmura
,
T.
,
Hojo
,
H.
,
Nakajima
,
M.
,
Wakabayashi
,
K.
,
Nagao
,
M.
,
Iida
,
S.
,
Kitagawa
,
T.
,
Kogo
,
M.
,
Kojima
,
T.
, and
Matsumura
,
K.
,
2004
, “
Prototype of Simulation of Orthognathic Surgery Using a Virtual Reality Haptic Device
,”
Int. J. Oral Maxillofac. Surg.
,
33
(
8
), pp.
740
750
.10.1016/j.ijom.2004.03.003
13.
Hsieh
,
M. S.
,
Tsai
,
M. D. A. R.
, and
Yeh
,
Y. I. D. E. R.
,
2006
, “
An Amputation Simulator With Bone Sawing Haptic Interaction
,”
Biomed. Eng. Appl. Basis Commun.
,
18
(
05
), pp.
229
236
.10.4015/S1016237206000361
14.
Chen
,
R. J.
,
Lin
,
H. W.
,
Chang
,
Y. H.
,
Wu
,
C. T.
, and
Lee
,
S. T.
,
2011
, “
Development of an Augmented Reality Force Feedback Virtual Surgery Training Platform
,”
Int. J. Autom. Smart Technol.
,
1
(
1
), pp.
41
51
.10.5875/ausmt.v1i1.102
15.
Sofronia
,
R. E.
,
Davidescu
,
A.
, and
Savii
,
G. G.
,
2012
, “
Towards a Virtual Reality Simulator for Orthognathic Basic Skills
,”
Appl. Mech. Mater.
,
162
, pp.
352
357
.10.4028/www.scientific.net/AMM.162.352
16.
Wang
,
Q.
,
Chen
,
H.
,
Wu
,
W.
,
Jin
,
H. Y.
, and
Heng
,
P. A.
, “
A Virtual Surgical Simulator for Mandibular Angle Reduction Based on Patient Specific Data
,”
Proc. Virtual Reality Workshops (VR), 2012 IEEE
,
IEEE
,
New York
, pp.
85
86
.
17.
Jacobs
,
C.
,
Pope
,
M.
,
Berry
,
J.
, and
Hoaglund
,
F.
,
1974
, “
A Study of the Bone Machining Process—Orthogonal Cutting
,”
J. Biomech.
,
7
(
2
), pp.
131
136
.10.1016/0021-9290(74)90051-7
18.
Plaskos
,
C.
,
Hodgson
,
A.
, and
Cinquin
,
P.
,
2003
, “
Modelling and Optimization of Bone-Cutting Forces in Orthopaedic Surgery
,”
Medical Image Computing and Computer-Assisted Intervention-MICCAI 2003
, pp.
254
261
.
19.
Mitsuishi
,
M.
,
Warisawa
,
S.
,
Sugita
,
N.
,
Suzuki
,
M.
,
Moriya
,
H.
,
Hashizume
,
H.
,
Fujiwara
,
K.
,
Abe
,
N.
,
Inoue
,
H.
, and
Kuramoto
,
K.
,
2005
, “
A Study of Bone Micro-Cutting Characteristics Using a Newly Developed Advanced Bone Cutting Machine Tool for Total Knee Arthroplasty
,”
CIRP Ann.
,
54
(
1
), pp.
41
46
.10.1016/S0007-8506(07)60045-6
20.
James
,
T. P.
,
Pearlman
,
J. J.
, and
Saigal
,
A.
,
2012
, “
Rounded Cutting Edge Model for the Prediction of Bone Sawing Forces
,”
ASME J. Biomech. Eng.
,
134
, p.
071001
.10.1115/1.4006972
21.
Lannin
,
T. B.
,
Kelly
,
M. P.
, and
James
,
T. P.
,
2011
, “
Reciprocating Bone Saw: Effect of Blade Speed on Cutting Rate
,”
Proceedings of the ASME 2011 International Mechanical Engineering Congress & Exposition (IMECE2011)
, November 11–17,
Denver
,
Colorado
.
22.
Norton
,
M. R.
, and
Gamble
,
C.
,
2001
, “
Bone Classification: An Objective Scale of Bone Density Using the Computerized Tomography Scan
,”
Clin. Oral Implants Res.
,
12
(
1
), pp.
79
84
.10.1034/j.1600-0501.2001.012001079.x
23.
MacAvelia
,
T.
,
Salahi
,
M.
,
Olsen
,
M.
,
Crookshank
,
M.
,
Schemitsch
,
E. H.
,
Ghasempoor
,
A.
,
Janabi-Sharifi
,
F.
, and
Zdero
,
R.
,
2012
, “
Biomechanical Measurements of Surgical Drilling Force and Torque in Human Versus Artificial Femurs
,”
ASME J. Biomech. Eng.
,
134
, p.
124503
.10.1115/1.4007953
24.
Yanping
,
L.
,
Xiaojun
,
C.
,
Shilei
,
Z.
,
Frof
,
W. C.
, and
Frof
,
S. G.
,
2011
, “
Computer-Aided Surgical Simulation and Navigation in Reconstruction of Old Complicated Cranio-Maxillofacial Fractures
,”
Procedia Environ. Sci.
,
8
, pp.
536
542
.10.1016/j.proenv.2011.10.083
25.
Ciarelli
,
M.
,
Goldstein
,
S.
,
Kuhn
,
J.
,
Cody
,
D.
, and
Brown
,
M.
,
2005
, “
Evaluation of Orthogonal Mechanical Properties and Density of Human Trabecular Bone From the Major Metaphyseal Regions With Materials Testing and Computed Tomography
,”
J. Orthop. Res.
,
9
(
5
), pp.
674
682
.10.1002/jor.1100090507
26.
Ong
,
F.
, and
Bouazza-Marouf
,
K.
,
2000
, “
Evaluation of Bone Strength: Correlation Between Measurements of Bone Mineral Density and Drilling Force
,”
Proc. Inst. Mech. Eng.: Part H: J. Eng. Med.
,
214
(
4
), pp.
385
–399.10.1243/0954411001535426
27.
MacAvelia
,
T.
,
Ghasempoor
,
A.
, and
Janabi-Sharifi
,
F.
,
2012
, “
Force and Torque Modelling of Drilling Simulation for Orthopaedic Surgery
,”
Computer Methods Biomech. Biomed. Eng.
, e-Publish Nov. 21, 2012, pp.
1
10
.10.1080/10255842.2012.739163
28.
Wu
,
J.
,
Yu
,
G.
,
Wang
,
D.
,
Zhang
,
Y.
, and
Wang
,
C.
, 2009, “
Voxel-Based Interactive Haptic Simulation of Dental Drilling
,” ASME 2009 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference,
Proc. International Design Engineering Technical Conferences & Computer and Information in Engineering Conference
, Vol 2:
29th Computers and Information in Engineering Conference
, Parts A and B, August 30–September 2, 2009, San Diego, CA.10.1115/DETC2009-86661
You do not currently have access to this content.