Cervical spine ligaments have an important role in providing spinal cord stability and restricting excessive movements. Therefore, it is of great importance to study the mechanical properties and model the response of these ligaments. The aim of this study is to characterize the aging effects on the failure properties and model the damage of three cervical spine ligaments: the anterior and the posterior longitudinal ligament and the ligamentum flavum. A total of 46 samples of human cadaveric ligaments removed within 24–48 h after death have been tested. Uniaxial tension tests along the fiber direction were performed in physiological conditions. The results showed that aging decreased the failure properties of all three ligaments (failure load, failure elongation). Furthermore, the reported nonlinear response of cervical ligaments has been modeled with a combination of the previously reported hyperelastic and damage model. The model predicted a nonlinear response and damage region. The model fittings are in agreement with the experimental data and the quality of agreement is represented with the values of the coefficient of determination close to 1.

References

References
1.
Troyer
,
K. L.
and
Puttlitz
,
C. M.
,
2011
, “
Human Cervical Spine Ligaments Exhibit Fully Nonlinear Viscoelastic Behavior
,”
Acta Biomater.
,
7
(
2
), pp.
700
709
.10.1016/j.actbio.2010.09.003
2.
Bass
,
C. R.
,
Planchak
,
C. J.
,
Salzar
,
R. S.
,
Lucas
,
S. R.
,
Rafaels
,
K. A.
,
Shender
,
B. S.
, and
Paskoff
,
G.
,
2007
, “
The Temperature-Dependent Viscoelasticity of Porcine Lumbar Spine Ligaments
,”
Spine
,
32
(
16
), pp.
E436
E442
.10.1097/BRS.0b013e3180b7fa58
3.
Yoganandan
,
N.
,
Kumaresan
,
S.
, and
Pintar
,
F. A.
,
2001
, “
Biomechanics of the Cervical Spine—Part 2: Cervical Spine Soft Tissue Responses and Biomechanical Modeling
,”
Clin. Biomech. (Bristol, Avon)
,
16
(
1
), pp.
1
27
.10.1016/S0268-0033(00)00074-7
4.
Quapp
,
K. M.
and
Weiss
,
J. A.
,
1998
, “
Material Characterization of Human Medial Collateral Ligament
,”
ASME J. Biomech. Eng.
,
120
(
6
), pp.
757
763
.10.1115/1.2834890
5.
White
,
A. A.
and
Panjabi
,
M. M.
,
1990
, “
Clinical Biomechanics of the Spine
,” J.B. Lippincott Philadelphia.
6.
Ivancic
,
P. C.
,
Pearson
,
A. M.
,
Panjabi
,
M. M.
, and
Ito
,
S.
,
2004
, “
Injury of the Anterior Longitudinal Ligament During Whiplash Simulation
,”
Eur. Spine J.
,
13
(
1
), pp.
61
68
.10.1007/s00586-003-0590-3
7.
Panjabi
,
M. M.
,
Crisco
,
J. J.
,
Vasavada
,
A.
,
Oda
,
T.
,
Cholewicki
,
J.
,
Nibu
,
K.
, and
Shin
,
E.
,
2001
, “
Mechanical Properties of the Human Cervical Spine as Shown by Three-Dimensional Load-Displacement Curves
,”
Spine
,
26
(
24
), pp.
2692
2700
.10.1097/00007632-200112150-00012
8.
Panjabi
,
M. M.
,
Cholewicki
,
J.
,
Nibu
,
K.
,
Grauer
,
J. N.
,
Babat
,
L. B.
, and
Dvorak
,
J.
,
1998
, “
Mechanism of Whiplash Injury
,”
Clin. Biomech. (Bristol, Avon)
,
13
(
4-5
), pp.
239
249
.10.1016/S0268-0033(98)00033-3
9.
Tominaga
,
Y.
,
Ndu
,
A. B.
,
Coe
,
M. P.
,
Valenson
,
A. J.
,
Ivancic
,
P. C.
,
Ito
,
S.
,
Rubin
,
W.
, and
Panjabi
,
M. M.
,
2006
, “
Neck Ligament Strength is Decreased Following Whiplash Trauma
,”
BMC Musculoskelet. Disord.
,
7
, p.
103
.10.1186/1471-2474-7-103
10.
Panjabi
,
M. M.
,
Pearson
,
A. M.
,
Ito
,
S.
,
Ivancic
,
P. C.
,
Gimenez
,
S. E.
, and
Tominaga
,
Y.
,
2004
, “
Cervical Spine Ligament Injury During Simulated Frontal Impact
,”
Spine
,
29
(
21
), pp.
2395
2403
.10.1097/01.brs.0000143173.92241.ab
11.
Siegmund
,
G. P.
,
Winkelstein
,
B. A.
,
Ivancic
,
P. C.
,
Svensson
,
M. Y.
, and
Vasavada
,
A.
,
2009
, “
The Anatomy and Biomechanics of Acute and Chronic Whiplash Injury
,”
Traffic Inj. Prev.
,
10
(
2
), pp.
101
112
.10.1080/15389580802593269
12.
Pearson
,
A. M.
,
Panjabi
,
M. M.
,
Ivancic
,
P. C.
,
Ito
,
S.
,
Cunningham
,
B. W.
,
Rubin
,
W.
, and
Gimenez
,
S. E.
,
2005
, “
Frontal Impact Causes Ligamentous Cervical Spine Injury
,”
Spine
,
30
(
16
), pp.
1852
1858
.10.1097/01.brs.0000174117.42046.63
13.
Cusick
,
J. F.
and
Yoganandan
,
N.
,
2002
, “
Biomechanics of the Cervical Spine 4: Major Injuries
,”
Clin. Biomech.
,
17
(
1
), pp.
1
20
.10.1016/S0268-0033(01)00101-2
14.
Ito
,
S.
,
Ivancic
,
P. C.
,
Panjabi
,
M. M.
, and
Cunningham
,
B. W.
,
2004
, “
Soft Tissue Injury Threshold During Simulated Whiplash: A Biomechanical Investigation
,”
Spine
,
29
(
9
), pp.
979
987
.10.1097/00007632-200405010-00006
15.
Cappon
,
H.
v.
R. M.
,
Wismans
,
J.
,
Hell
,
W.
,
Lang
,
D.
, and
Svensson
,
M.
,
2003
, “
Whiplash Injuries, Not Only a Problem in Rear-End Impact
,”
18th International Technical Conference on the Enhanced Safety of Vehicles
.
16.
Omerovic
,
S.
,
Stojanović
,
A.
,
Krašna
,
S.
, and
Prebil
,
I.
,
2012
, “
Finite Element Model of Human Head, Neck and Torso for Adult and 3 y.o. Child
,”
J. Biomech.
,
45
(
1
), p.
S205
.10.1016/S0021-9290(12)70206-3
17.
Curatolo
,
M.
,
Bogduk
,
N.
,
Ivancic
,
P. C.
,
McLean
,
S. A.
,
Siegmund
,
G. P.
, and
Winkelstein
,
B. A.
,
2011
, “
The Role of Tissue Damage in Whiplash-Associated Disorders: Discussion Paper 1
,”
Spine
,
36
(
25
), pp.
S309
S315
.10.1097/BRS.0b013e318238842a
18.
Chazal
,
J.
,
Tanguy
,
A.
,
Bourges
,
M.
,
Gaurel
,
G.
,
Escande
,
G.
,
Guillot
,
M.
, and
Vanneuville
,
G.
,
1985
, “
Biomechanical Properties of Spinal Ligaments and a Histological Study of the Supraspinal Ligament in Traction
,”
J. Biomech.
,
18
(
3
), pp.
167
176
.10.1016/0021-9290(85)90202-7
19.
Myklebust
,
J. B.
,
Pintar
,
F.
,
Yoganandan
,
N.
,
Cusick
,
J. F.
,
Maiman
,
D.
,
Myers
,
T. J.
, and
Sances
,
A.
, Jr
.,
1988
, “
Tensile Strength of Spinal Ligaments
,”
Spine
,
13
(
5
), pp.
526
531
.
20.
Yoganandan
,
N.
,
Kumaresan
,
S.
, and
Pintar
,
F. A.
,
2000
, “
Geometric and Mechanical Properties of Human Cervical Spine Ligaments
,”
ASME J. Biomech. Eng.
,
122
(
6
), pp.
623
629
.10.1115/1.1322034
21.
Butler
,
J.
,
Pintar
,
F.
,
Yoganandan
,
N.
,
Myklebust
,
J.
,
Reinartz
,
J.
, and
Sances
,
A.
, Jr
.,
1988
, “
Static and Dynamic Comparison of Human Cervical Spinal Ligaments
,”
Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society
, Vol.
672
, pp.
679
680
.
22.
Yoganandan
,
N.
,
Pintar
,
F.
,
Butler
,
J.
,
Reinartz
,
J.
,
Sances
,
A.
, Jr.
, and
Larson
,
S. J.
,
1989
, “
Dynamic Response of Human Cervical Spine Ligaments
,”
Spine
,
14
(
10
), pp.
1102
1110
.10.1097/00007632-198910000-00013
23.
Przybylski
,
G. J.
,
Carlin
,
G. J.
,
Patel
,
P. R.
, and
Woo
,
S. L.
,
1996
, “
Human Anterior and Posterior Cervical Longitudinal Ligaments Possess Similar Tensile Properties
,”
J. Orthop. Res.
,
14
(
6
), pp.
1005
1008
.10.1002/jor.1100140623
24.
Ivancic
,
P. C.
,
Coe
,
M. P.
,
Ndu
,
A. B.
,
Tominaga
,
Y.
,
Carlson
,
E. J.
,
Rubin
,
W.
,
Dipl-Ing
,
F. H.
, and
Panjabi
,
M. M.
,
2007
, “
Dynamic Mechanical Properties of Intact Human Cervical Spine Ligaments
,”
Spine J.
,
7
(
6
), pp.
659
665
.10.1016/j.spinee.2006.10.014
25.
Shim
, V
. P. W.
,
Liu
,
J. F.
, and
Lee
,
V. S.
,
2006
, “
A Technique for Dynamic Tensile Testing of Human Cervical Spine Ligaments
,”
Exp. Mech.
,
46
(
1
), pp.
77
89
.10.1007/s11340-006-5865-2
26.
Bass
,
C. R.
,
Lucas
,
S. R.
,
Salzar
,
R. S.
,
Oyen
,
M. L.
,
Planchak
,
C.
,
Shender
,
B. S.
, and
Paskoff
,
G.
,
2007
, “
Failure Properties of Cervical Spinal Ligaments Under Fast Strain Rate Deformations
,”
Spine
,
32
(
1
), pp.
E7
E13
.10.1097/01.brs.0000251058.53905.eb
27.
Lucas
,
S. R.
,
Bass
,
C. R.
,
Salzar
,
R. S.
,
Oyen
,
M. L.
,
Planchak
,
C.
,
Ziemba
,
A.
,
Shender
,
B. S.
, and
Paskoff
,
G.
,
2008
, “
Viscoelastic Properties of the Cervical Spinal Ligaments Under Fast Strain-Rate Deformations
,”
Acta Biomater.
,
4
(
1
), pp.
117
125
.10.1016/j.actbio.2007.08.003
28.
Mattucci
,
S. F. E.
,
Moulton
,
J. A.
,
Chandrashekar
,
N.
, and
Cronin
,
D. S.
,
2012
, “
Strain Rate Dependent Properties of Younger Human Cervical Spine Ligaments
,”
J. Mech. Behav. Biomed. Mater.
,
10
, pp.
216
226
.10.1016/j.jmbbm.2012.02.004
29.
Neumann
,
P.
,
Ekstrom
,
L. A.
,
Keller
,
T. S.
,
Perry
,
L.
, and
Hansson
,
T. H.
,
1994
, “
Aging, Vertebral Density, and Disc Degeneration Alter the Tensile Stress-Strain Characteristics of the Human Anterior Longitudinal Ligament
,”
J. Orthop. Res.
,
12
(
1
), pp.
103
112
.10.1002/jor.1100120113
30.
Nachemson
,
A. L.
and
Evans
,
J. H.
,
1968
, “
Some Mechanical Properties of the Third Human Lumbar Interlaminar Ligament (Ligamentum Flavum)
,”
J. Biomech.
,
1
(
3
), pp.
211
220
.10.1016/0021-9290(68)90006-7
31.
Moon
,
D. K.
,
Woo
,
S. L.
,
Takakura
,
Y.
,
Gabriel
,
M. T.
, and
Abramowitch
,
S. D.
,
2006
, “
The Effects of Refreezing on the Viscoelastic and Tensile Properties of Ligaments
,”
J. Biomech.
,
39
(
6
), pp.
1153
1157
.10.1016/j.jbiomech.2005.02.012
32.
Cheng
,
S.
,
Clarke
,
E. C.
, and
Bilston
,
L. E.
,
2009
, “
The Effects of Preconditioning Strain on Measured Tissue Properties
,”
J. Biomech.
,
42
(
9
), pp.
1360
1362
.10.1016/j.jbiomech.2009.03.023
33.
Quinn
,
K. P.
and
Winkelstein
,
B. A.
,
2011
, “
Preconditioning is Correlated With Altered Collagen Fiber Alignment in Ligament
,”
ASME J. Biomech. Eng.
,
133
(
6
), p.
064506
.10.1115/1.4004205
34.
Natali
,
A.
,
Pavan
,
P.
,
Carniel
,
E.
,
Dario
,
P.
, and
Izzo
,
I.
,
2008
, “
Characterization of Soft Tissue Mechanics With Aging
,”
IEEE Eng. Med. Biol. Mag.
,
27
(
4
), pp.
15
22
.10.1109/MEMB.2008.919492
35.
Holzapfel
,
G. A.
and
Simo
,
J. C.
,
1996
, “
A New Viscoelastic Constitutive Model for Continuous Media at Finite Thermomechanical Changes
,”
Int. J. Solids Struct.
,
33
(
20–22
), pp.
3019
3034
.10.1016/0020-7683(95)00263-4
36.
Natali
,
A. N.
,
Pavan
,
P. G.
,
Carniel
,
E. L.
,
Lucisano
,
M. E.
, and
Taglialavoro
,
G.
,
2005
, “
Anisotropic Elasto-Damage Constitutive Model for the Biomechanical Analysis of Tendons
,”
Med. Eng. Phys.
,
27
(
3
), pp.
209
214
.10.1016/j.medengphy.2004.10.011
37.
Weiss
,
J.
,
Gardiner
,
J.
,
Ellis
,
B.
,
Lujan
,
T.
, and
Phatak
,
N.
,
2005
, “
Three-Dimensional Finite Element Modeling of Ligaments: Technical Aspects
,”
Med. Eng. Phys.
,
27
(
10
), pp.
845
861
.10.1016/j.medengphy.2005.05.006
38.
Weiss
,
J. A.
and
Gardiner
,
J. C.
,
2001
, “
Computational Modeling of Ligament Mechanics
,”
Crit. Rev. Biomed. Eng.
,
29
(
3
), pp.
303
371
.10.1615/CritRevBiomedEng.v29.i3.20
39.
Guo
,
Z.
and
De Vita
,
R.
,
2009
, “
Probabilistic Constitutive Law for Damage in Ligaments
,”
Med. Eng. Phys.
,
31
(
9
), pp.
1104
1109
.10.1016/j.medengphy.2009.06.011
40.
Calvo
,
B.
,
Peña
,
E.
,
Martinez
,
M. A.
, and
Doblaré
,
M.
,
2007
, “
An Uncoupled Directional Damage Model for Fibred Biological Soft Tissues. Formulation and Computational Aspects
,”
Int. J. Numer. Methods Eng.
,
69
(
10
), pp.
2036
2057
.10.1002/nme.1825
41.
Pena
,
E.
,
2011
, “
Damage Functions of the Internal Variables for Soft Biological Fibred Tissues
,”
Mech. Res. Commun.
,
38
(
8
), pp.
610
615
.10.1016/j.mechrescom.2011.09.002
42.
Calvo
,
B.
,
Peña
,
E.
,
Martins
,
P.
,
Mascarenhas
,
T.
,
Doblaré
,
M.
,
Natal Jorge
,
R. M.
, and
Ferreira
,
A.
,
2009
, “
On Modelling Damage Process in Vaginal Tissue
,”
J. Biomech.
,
42
(
5
), pp.
642
651
.10.1016/j.jbiomech.2008.12.002
43.
Peña
,
E.
,
Calvo
,
B.
,
Martínez
,
M. A.
, and
Doblaré
,
M.
,
2008
, “
On Finite-Strain Damage of Viscoelastic-Fibred Materials. Application to Soft Biological Tissues
,”
Int. J. Numer. Methods Eng
,
74
(
7
), pp.
1198
1218
.10.1002/nme.2212
44.
Yong-Hing
,
K.
,
Reilly
,
J.
, and
Kirkaldy-Willis
,
W. H.
,
1976
, “
The Ligamentum Flavum
,”
Spine
,
1
(
4
), pp.
226
234
.10.1097/00007632-197612000-00007
45.
Provenzano
,
P. P.
,
Heisey
,
D.
,
Hayashi
,
K.
,
Lakes
,
R.
, and
Vanderby
,
R.
, Jr.
,
2002
, “
Subfailure Damage in Ligament: A Structural and Cellular Evaluation
,”
J. Appl. Physiol.
,
92
(
1
), pp.
362
371
.
46.
Putz
,
R.
,
1992
, “
The Detailed Functional Anatomy of the Ligaments of the Vertebral Column
,”
Ann. Anat.
,
174
(
1
), pp.
40
47
.10.1016/S0940-9602(11)80339-0
47.
Stojanović
,
A.
,
Omerović
,
S.
,
Krašna
,
S.
and
Prebil
,
I.
,
2012
, “
Mechanical Properties of Human Cervical Spine Ligaments: Age Related Changes
,”
J. Biomech.
,
45
(
1
), p.
S611
.10.1016/S0021-9290(12)70612-7
48.
Holzapfel
,
G. A.
,
2005
, “
Similarities Between Soft Biological Tissues and Rubberlike Materials
,”
Proceedings of the 4th European Conference on Constitutive Models for Rubber (ECCMR 2005)
, pp.
607
617
.
49.
Hayashi
,
K.
,
Yabuki
,
T.
,
Kurokawa
,
T.
,
Seki
,
H.
,
Hogaki
,
M.
, and
Minoura
,
S.
,
1977
, “
The Anterior and the Posterior Longitudinal Ligaments of the Lower Cervical Spine
,”
J. Anat.
,
124
(
3
), pp.
633
636
.
50.
Holzapfel
,
G. A.
,
2000
, “
Nonlinear Solid Mechanics: A Continuum Approach for Engineering
,” Wiley, Chichester, New York.
51.
Weiss
,
J. A.
,
1991
, “
A Constitutive Model and Finite Element Representation for Transversely Isotropic Soft Tissues
,” Ph.D. thesis, The University of Utah, Salt Lake City, UT.
52.
Ogden
,
R. W.
,
1997
, “
Non-Linear Elastic Deformations
,” Dover Publications, Mineola, N.Y.
53.
Galle
,
B.
,
Ouyang
,
H.
,
Shi
,
R.
, and
Nauman
,
E.
,
2010
, “
A Transversely Isotropic Constitutive Model of Excised Guinea Pig Spinal Cord White Matter
,”
J. Biomech.
,
43
(
14
), pp.
2839
2843
.10.1016/j.jbiomech.2010.06.014
54.
Weiss
,
J. A.
,
Gardiner
,
J. C.
, and
Bonifasi-Lista
,
C.
,
2002
, “
Ligament Material Behavior is Nonlinear, Viscoelastic and Rate-Independent Under Shear Loading
,”
J. Biomech.
,
35
(
7
), pp.
943
950
.10.1016/S0021-9290(02)00041-6
55.
Simo
,
J. C.
,
1987
, “
On a Fully Three-Dimensional Finite-Strain Viscoelastic Damage Model: Formulation and Computational Aspects
,”
Comput. Methods Appl. Mech. Eng.
,
60
(
2
), pp.
153
173
.10.1016/0045-7825(87)90107-1
56.
Calvo
,
B.
,
Ramírez
,
A.
,
Alonso
,
A.
,
Grasa
,
J.
,
Soteras
,
F.
,
Osta
,
R.
, and
Muñoz
,
M. J.
,
2010
, “
Passive Nonlinear Elastic Behaviour of Skeletal Muscle: Experimental Results and Model Formulation
,”
J. Biomech.
,
43
(
2
), pp.
318
325
.10.1016/j.jbiomech.2009.08.032
57.
Nakagawa
,
H.
,
Mikawa
,
Y.
, and
Watanabe
,
R.
,
1994
, “
Elastin in the Human Posterior Longitudinal Ligament and Spinal Dura. A Histologic and Biochemical Study
,”
Spine
,
19
(
19
), pp.
2164
2169
.10.1097/00007632-199410000-00006
58.
Yahia
,
L. H.
,
Garzon
,
S.
,
Strykowski
,
H.
, and
Rivard
,
C. H.
,
1990
, “
Ultrastructure of the Human Interspinous Ligament and Ligamentum Flavum. A Preliminary Study
,”
Spine
,
15
(
4
), pp.
262
268
.10.1097/00007632-199004000-00002
59.
Panjabi
,
M. M.
and
Courtney
,
T. W.
,
2001
, “
High-Speed Subfailure Stretch of Rabbit Anterior Cruciate Ligament: Changes in Elastic, Failure and Viscoelastic Characteristics
,”
Clin. Biomech.
,
16
(
4
), pp.
334
340
.10.1016/S0268-0033(01)00007-9
60.
Cowin
,
S. C.
and
Doty
,
S. B.
,
2007
,
Tissue Mechanics
,
Springer
,
New York
.
61.
Arnoux
,
P. J.
,
Chabrand
,
P.
,
Jean
,
M.
, and
Bonnoit
,
J.
,
2002
, “
A Visco-Hyperelastic Model With Damage for the Knee Ligaments Under Dynamic Constraints
,”
Comput. Methods Biomech. Biomed. Eng.
,
5
(
2
), pp.
167
174
.10.1080/10255840290010283
62.
Peña
,
E.
,
2011
, “
A Rate Dependent Directional Damage Model for Fibred Materials: Application to Soft Biological Tissues
,”
Comput. Mech.
,
48
(
4
), pp.
407
420
.10.1007/s00466-011-0594-5
63.
Martins
,
P.
,
Pena
,
E.
,
Jorge
,
R. M.
,
Santos
,
A.
,
Santos
,
L.
,
Mascarenhas
,
T.
, and
Calvo
,
B.
,
2012
, “
Mechanical Characterization and Constitutive Modelling of the Damage Process in Rectus Sheath
,”
J. Mech. Behav. Biomed. Mater.
,
8
, pp.
111
122
.10.1016/j.jmbbm.2011.12.005
64.
Standring
,
S.
,
2008
,
Gray's Anatomy: The Anatomical Basis of Clinical Practice
,
Churchill Livingstone Elsevier
,
New York
.
65.
Quinn
,
K. P.
and
Winkelstein
,
B. A.
,
2007
, “
Cervical Facet Capsular Ligament Yield Defines the Threshold for Injury and Persistent Joint-Mediated Neck Pain
,”
J. Biomech.
,
40
(
10
), pp.
2299
2306
.10.1016/j.jbiomech.2006.10.015
66.
Gardiner
,
J. C.
and
Weiss
,
J. A.
,
2003
, “
Subject-Specific Finite Element Analysis of the Human Medial Collateral Ligament During Valgus Knee Loading
,”
J. Orthop. Res.
,
21
(
6
), pp.
1098
1106
.10.1016/S0736-0266(03)00113-X
67.
Heuer
,
F.
,
Wolfram
,
U.
,
Schmidt
,
H.
, and
Wilke
,
H. J.
,
2008
, “
A Method to Obtain Surface Strains of Soft Tissues Using a Laser Scanning Device
,”
J. Biomech.
,
41
(
11
), pp.
2402
2410
.10.1016/j.jbiomech.2008.05.031
68.
Tong
,
J.
,
Cohnert
,
T.
,
Regitnig
,
P.
, and
Holzapfel
,
G. A.
,
2011
, “
Effects of Age on the Elastic Properties of the Intraluminal Thrombus and the Thrombus-Covered Wall in Abdominal Aortic Aneurysms: Biaxial Extension Behaviour and Material Modelling
,”
Eur. J. Vasc. Endovasc. Surg.
,
42
(
2
), pp.
207
219
.10.1016/j.ejvs.2011.02.017
You do not currently have access to this content.