The pathology of the human abdominal aortic aneurysm (AAA) and its relationship to the later complication of intraluminal thrombus (ILT) formation remains unclear. The hemodynamics in the diseased abdominal aorta are hypothesized to be a key contributor to the formation and growth of ILT. The objective of this investigation is to establish a reliable 3D flow visualization method with corresponding validation tests with high confidence in order to provide insight into the basic hemodynamic features for a better understanding of hemodynamics in AAA pathology and seek potential treatment for AAA diseases. A stereoscopic particle image velocity (PIV) experiment was conducted using transparent patient-specific experimental AAA models (with and without ILT) at three axial planes. Results show that before ILT formation, a 3D vortex was generated in the AAA phantom. This geometry-related vortex was not observed after the formation of ILT, indicating its possible role in the subsequent appearance of ILT in this patient. It may indicate that a longer residence time of recirculated blood flow in the aortic lumen due to this vortex caused sufficient shear-induced platelet activation to develop ILT and maintain uniform flow conditions. Additionally, two computational fluid dynamics (CFD) modeling codes (Fluent and an in-house cardiovascular CFD code) were compared with the two-dimensional, three-component velocity stereoscopic PIV data. Results showed that correlation coefficients of the out-of-plane velocity data between PIV and both CFD methods are greater than 0.85, demonstrating good quantitative agreement. The stereoscopic PIV study can be utilized as test case templates for ongoing efforts in cardiovascular CFD solver development. Likewise, it is envisaged that the patient-specific data may provide a benchmark for further studying hemodynamics of actual AAA, ILT, and their convolution effects under physiological conditions for clinical applications.

References

1.
Upchurch
,
G. R.
, and
Schaub
,
T. A.
,
2006
, “
Abdominal Aortic Aneurysm
,”
Am. Family Physician
,
73
(
7
), pp.
1198
1204
.
2.
Lopez-Candales
,
A.
,
Holmes
,
D. R.
,
Liao
,
S. X.
,
Scott
,
M. J.
,
Wickline
,
S. A.
, and
Thompson
,
R. W.
,
1997
, “
Decreased Vascular Smooth Muscle Cell Density in Medial Degeneration of Human Abdominal Aortic Aneurysms
,”
Am. J. Pathol.
,
150
(
3
), pp.
993
1007
.
3.
Ailawadi
,
G.
,
Eliason
,
J. L.
, and
Upchurch
,
G. R.
,
2003
, “
Current Concepts in the Pathogenesis of Abdominal Aortic Aneurysm
,”
J. Vasc. Surg.
,
38
, pp.
584
588
.10.1016/S0741-5214(03)00324-0
4.
Watton
,
P. N.
,
Raberger
,
N. B.
,
Holzapfel
,
G. A.
, and
Ventikos
,
Y.
,
2009
, “
Coupling the Hemodynamic Environment to the Evolution of Cerebral Aneurysms: Computational Framework and Numerical Examples
,”
ASME J. Biomech. Eng.
,
131
, p.
101003
.10.1115/1.3192141
5.
Anderson
,
R. N.
,
2002
, “
Deaths: Leading Causes for 2000
,”
Natl. Vital Stat. Rep.
,
50
(
16
), pp.
1
85
.
6.
Wassef
,
M.
,
Baxter
,
B. T.
,
Chisholm
,
R. L.
Dalman
,
R. L.
,
Fillinger, Heinecke
,
J.
,
2001
, “
Pathogenesis of Abdominal Aortic Aneurysms: A Multidisciplinary Research Program Supported by the National Heart, Lung, and Blood Institute
,”
J. Vasc. Surg.
,
34
, pp.
730
738
.10.1067/mva.2001.116966
7.
Wang
,
D. H.
,
Makaroun
,
M. S.
,
Webster
,
M. W.
, and
Vorp
,
D. A.
,
2002
, “
Effect of Intraluminal Thrombus on Wall Stress in Patient-Specific Models of Abdominal Aortic Aneurysm
,”
J. Vasc. Surg.
,
36
, pp.
598
604
.10.1067/mva.2002.126087
8.
Harter
,
L. P.
,
Gross
,
B. H.
,
Callen
,
P. W.
, and
Barth
,
R. A.
,
1982
, “
Ultrasonic Evaluation of Abdominal Aortic Thrombus
,”
J. Ultrasound Med.
,
1
(
8
), pp.
315
318
.
9.
Kleinstreuer
,
C.
, and
Li
,
Z.
,
2006
, “
Analysis and Computer Program for Rupture-Risk Prediction of Abdominal Aortic Aneurysms
,”
Biomed. Eng. Online
,
5
, p.
19
.10.1186/1475-925X-5-19
10.
Schurink
,
G. W.
,
van Baalen
,
J. M.
,
Visser
,
M. J.
, and
van Bockel
,
J. H.
,
2000
, “
Thrombus Within an Aortic Aneurysm Does Not Reduce Pressure on the Aneurysmal Wall
,”
J. Vasc. Surg.
,
31
, pp.
501
506
.10.1067/mva.2000.103693
11.
Vorp
,
D. A.
,
Mandarino
,
W. A.
,
Webster
,
M. W.
, and
Gorcsan
,
J.
, 3rd
,
1996
, “
Potential Influence of Intraluminal Thrombus on Abdominal Aortic Aneurysm As Assessed by a New Non-Invasive Method
,”
Cardiovasc. Surg.
,
4
, pp.
732
739
.10.1016/S0967-2109(96)00008-7
12.
Biasetti
,
J.
,
Hussain
,
F.
, and
Gasser
,
T. C.
,
2011
, “
Blood Flow and Coherent Vortices in the Normal and Aneurysmatic Aortas: A Fluid Dynamical Approach to Intraluminal Thrombus Formation
,”
J. R. Soc. Interface
,
8
, pp.
1449
1461
.10.1098/rsif.2011.0041
13.
Shojima
,
M.
,
Oshima
,
M.
,
Takagi
,
K.
,
Torii
,
R.
,
Hayakawa
,
M.
,
Katada
,
K.
,
2004
, “
Magnitude and Role of Wall Shear Stress on Cerebral Aneurysm: Computational Fluid Dynamic Study of 20 Middle Cerebral Artery Aneurysms
,”
Stroke
,
35
, pp.
2500
2505
.10.1161/01.STR.0000144648.89172.0f
14.
Di Martino
,
E. S.
, and
Vorp
,
D. A.
,
2003
, “
Effect of Variation in Intraluminal Thrombus Constitutive Properties on Abdominal Aortic Aneurysm Wall Stress
,”
Ann. Biomed. Eng.
,
31
, pp.
804
809
.10.1114/1.1581880
15.
Basciano
,
C.
,
Kleinstreuer
,
C.
,
Hyun
,
S.
, and
Finol
,
E. A.
,
2011
, “
A Relation Between Near-Wall Particle-Hemodynamics and Onset of Thrombus Formation in Abdominal Aortic Aneurysms
,”
Ann. Biomed. Eng.
,
39
, pp.
2010
2026
.10.1007/s10439-011-0285-6
16.
Finol
,
E. A.
, and
Amon
,
C. H.
,
2001
, “
Blood Flow in Abdominal Aortic Aneurysms: Pulsatile Flow Hemodynamics
,”
ASME J. Biomech. Eng.
,
123
(
5
), pp.
474
484
.10.1115/1.1395573
17.
Finol
,
E. A.
, and
Amon
,
C. H.
,
2002
, “
Flow-Induced Wall Shear Stress in Abdominal Aortic Aneurysms: Part I—Steady Flow Hemodynamics
,”
Comput. Methods Biomech. Biomed. Eng.
,
5
, pp.
309
318
.10.1080/1025584021000009742
18.
Finol
,
E. A.
,
Keyhani
,
K.
, and
Amon
,
C. H.
,
2003
, “
The Effect of Asymmetry in Abdominal Aortic Aneurysms Under Physiologically Realistic Pulsatile Flow Conditions
,”
ASME J. Biomech. Eng.
,
125
(
2
), pp.
207
217
.10.1115/1.1543991
19.
Scotti
,
C. M.
,
Shkolnik
,
A. D.
,
Muluk
,
S. C.
, and
Finol
,
E. A.
,
2005
, “
Fluid–Structure Interaction in Abdominal Aortic Aneurysms: Effects of Asymmetry and Wall Thickness
,”
Biomed, Eng, Online
,
4
, p.
64
.10.1186/1475-925X-4-64
20.
Scotti
,
C. M.
, and
Finol
,
E. A.
,
2007
, “
Compliant Biomechanics of Abdominal Aortic Aneurysms: A Fluid–Structure Interaction Study
,”
Comput. Struct.
,
85
, pp.
1097
1113
.10.1016/j.compstruc.2006.08.041
21.
Scotti
,
C. M.
,
Jimenez
,
J.
,
Muluk
,
S. C.
, and
Finol
,
E. A.
,
2008
, “
Wall Stress and Flow Dynamics in Abdominal Aortic Aneurysms: Finite Element Analysis vs. Fluid–Structure Interaction
,”
Comput. Methods Biomech. Biomed. Eng.
,
11
, pp.
301
322
.10.1080/10255840701827412
22.
Le
,
T. B.
,
Borazjani
,
I.
, and
Sotiropoulos
,
F.
,
2010
, “
Pulsatile Flow Effects on the Hemodynamics of Intracranial Aneurysms
,”
ASME J. Biomech. Eng.
,
132
(
11
), p.
111009
.10.1115/1.4002702
23.
Lindken
,
R.
,
Rossi
,
M.
,
Grosse
,
S.
, and
Westerweel
,
J.
,
2009
, “
Micro-Particle Image Velocimetry (microPIV): Recent Developments, Applications, and Guidelines
,”
Lab Chip
,
9
, pp.
2551
2567
.10.1039/b906558j
24.
Vennemann
,
P.
,
Lindken
,
R.
, and
Westerweel
,
J.
,
2007
, “
In Vivo Whole-Field Blood Velocity Measurement Techniques
,”
Exp. Fluids
,
42
, pp.
495
511
.10.1007/s00348-007-0276-4
25.
Stamatopoulos
,
C.
,
Mathioulakis
,
D. S.
,
Papaharilaou
,
Y.
, and
Katsamouris
,
A.
,
2011
, “
Experimental Unsteady Flow Study in a Patient-Specific Abdominal Aortic Aneurysm Model
,”
Exp. Fluids
,
50
, pp.
1695
1709
.10.1007/s00348-010-1034-6
26.
Boutsianis
,
E.
,
Guala
,
M.
,
Olgac
,
U.
,
Wildermuth
,
S.
,
Hoyer
,
K.
,
Ventikos
,
Y.
,
2009
, “
CFD and PTV Steady Flow Investigation in an Anatomically Accurate Abdominal Aortic Aneurysm
,”
ASME J. Biomech. Eng.
,
131
(
1
), p.
011008
.10.1115/1.3002886
27.
Yoganathan
,
A. P.
,
Wang
,
C. A.
,
Pekkan
,
K.
,
de Zelicourt
,
D.
,
Horner
,
M.
,
Parihar
,
A.
,
2007
, “
Progress in the CFD Modeling of Flow Instabilities in Anatomical Total Cavopulmonary Connections
,”
Ann. Biomed. Eng.
,
35
, pp.
1840
1856
.10.1007/s10439-007-9356-0
28.
Hoi
,
Y.
,
Woodward
,
S. H.
,
Kim
,
M.
,
Taulbee
,
D. B.
, and
Meng
,
H.
,
2006
, “
Validation of CFD Simulations of Cerebral Aneurysms With Implication of Geometric Variations
,”
ASME J. Biomech. Eng.
,
128
(
6
), pp.
844
851
.10.1115/1.2354209
29.
Scottie
,
C.
,
2007
, “
In Vitro and in Vivo Dynamics of Abdominal Aortic Aneurysms: A Fluid–Structure Interaction Study
,” Ph.D., Biomedical Engineering, Carnegie Mellon University.
30.
Lara
,
M.
,
Chen
,
C. Y.
,
Mannor
,
P.
,
Dur
,
O.
,
Menon
,
P. G.
,
Yoganathan
,
A. P.
,
2011
, “
Hemodynamics of the Hepatic Venous Three-Vessel Confluences Using Particle Image Velocimetry
,”
Ann. Biomed. Eng
.
31.
Fraser
,
K. H.
,
Li
,
M. X.
,
Lee
,
W. T.
,
Easson
,
W. J.
, and
Hoskins
,
P. R.
,
2009
, “
Fluid–Structure Interaction in Axially Symmetric Models of Abdominal Aortic Aneurysms
,”
Proc. Inst. Mech. Eng. H
,
223
, pp.
195
209
.10.1243/09544119JEIM443
32.
Keane
,
R. D.
, and
Adrian
,
R. J.
,
1990
, “
Optimization of Particle Image Velocimeters. 1. Double Pulsed Systems
,”
Measure. Sci. Technol.
,
1
, pp.
1202
1215
.10.1088/0957-0233/1/11/013
33.
Wieneke
,
B.
,
2005
, “
Stereo-PIV Using Self-Calibration on Particle Images
,”
Exp. Fluids
,
39
, pp.
267
280
.10.1007/s00348-005-0962-z
34.
Lindken
,
R.
,
Westerweel
,
J.
, and
Wieneke
,
B.
,
2006
, “
Stereoscopic Micro Particle Image Velocimetry
,”
Exp. Fluids
,
41
, pp.
161
171
.10.1007/s00348-006-0154-5
35.
Antiga
,
L.
,
Ene-Iordache
,
B.
,
Caverni
,
L.
,
Cornalba
,
G. P.
, and
Remuzzi
,
A.
,
2002
, “
Geometric Reconstruction for Computational Mesh Generation of Arterial Bifurcations From CT Angiography
,”
Comput. Med. Imaging Graphics
,
26
, pp.
227
235
.10.1016/S0895-6111(02)00020-4
36.
Prakash
,
S.
, and
Ethier
,
C. R.
,
2001
, “
Requirements for Mesh Resolution in 3D Computational Hemodynamics
,”
ASME J. Biomech. Eng.
,
123
(
2
), pp.
134
144
.10.1115/1.1351807
37.
Ge
,
L.
, and
Sotiropoulos
,
F.
,
2007
, “
A Numerical Method for Solving the 3D Unsteady Incompressible Navier-Stokes Equations in Curvilinear Domains With Complex Immersed Boundaries
,”
J. Comput. Phys.
,
225
, pp.
1782
1809
.10.1016/j.jcp.2007.02.017
38.
Menon
,
P.
,
Teslovich
,
N.
,
Chen
,
C.-Y.
,
Undar
,
A.
, and
Pekkan
,
K.
,
2013
, “
Characterization of Neonatal Aortic Cannulae Jet Flow Regimes for Improved Cardiopulmonary Bypass
,”
J. Biomech.
,
46
, pp.
362
372
.10.1016/j.jbiomech.2012.10.029
39.
Pekkan
,
K.
,
de Zelicourt
,
D.
,
Ge
,
L.
,
Sotiropoulos
,
F.
,
Frakes
,
D.
,
Fogel
,
M. A.
,
2005
, “
Physics-Driven CFD Modeling of Complex Anatomical Cardiovascular Flows—A TCPC Case Study
,”
Ann. Biomed. Eng.
,
33
, pp.
284
300
.10.1007/s10439-005-1731-0
40.
Bluestein
,
D.
,
Niu
,
L.
,
Schoephoerster
,
R. T.
, and
Dewanjee
,
M. K.
,
1996
, “
Steady Flow in an Aneurysm Model: Correlation Between Fluid Dynamics and Blood Platelet Deposition
,”
ASME J. Biomech. Eng.
,
118
(
3
), pp.
280
286
.10.1115/1.2796008
41.
Salsac
,
A. V.
,
Sparks
,
S. R.
, and
Lasheras
,
J. C.
,
2004
, “
Hemodynamic Changes Occurring During the Progressive Enlargement of Abdominal Aortic Aneurysms
,”
Ann. Vasc. Surg.
,
18
, pp.
14
21
.10.1007/s10016-003-0101-3
42.
Deplano
,
V.
,
Knapp
,
Y.
,
Bertrand
,
E.
, and
Gaillard
,
E.
,
2007
, “
Flow Behaviour in an Asymmetric Compliant Experimental Model for Abdominal Aortic Aneurysm
,”
J. Biomech.
,
40
, pp.
2406
2413
.10.1016/j.jbiomech.2006.11.017
43.
Lawson
,
N. J.
, and
Wu
,
J.
,
1997
, “
Three-Dimensional Particle Image Velocimetry: Error Analysis of Stereoscopic Techniques
,”
Measure. Sci. Technol.
,
8
, pp.
894
900
.10.1088/0957-0233/8/8/010
44.
Kung
,
E. O.
,
Les
,
A. S.
,
Medina
,
F.
,
Wicker
,
R. B.
,
McConnell
,
M. V.
, and
Taylor
,
C. A.
,
2011
, “
In Vitro Validation of Finite-Element Model of AAA Hemodynamics Incorporating Realistic Outlet Boundary Conditions
,”
ASME J. Biomech. Eng.
,
133
(
2
), p.
041003
.10.1115/1.4003526
45.
Antón
,
R.
,
Chen
,
C.-Y.
,
Hung
,
M.-Y.
,
Finol
,
E. A.
, and
Pekkan
,
K.
, “
Experimental and Computational Investigation of the Patient-Specific Abdominal Aortic Aneurysm Pressure Field
,”
Comput. Methods Biomech. Biomed. Eng.
, in press.
You do not currently have access to this content.