This study introduces a framework for co-simulating neuromuscular dynamics and knee joint mechanics during gait. A knee model was developed that included 17 ligament bundles and a representation of the distributed contact between a femoral component and tibial insert surface. The knee was incorporated into a forward dynamics musculoskeletal model of the lower extremity. A computed muscle control algorithm was then used to modulate the muscle excitations to drive the model to closely track measured hip, knee, and ankle angle trajectories of a subject walking overground with an instrumented knee replacement. The resulting simulations predicted the muscle forces, ligament forces, secondary knee kinematics, and tibiofemoral contact loads. Model-predicted tibiofemoral contact forces were of comparable magnitudes to experimental measurements, with peak medial (1.95 body weight (BW)) and total (2.76 BW) contact forces within 4–17% of measured values. Average root-mean-square errors over a gait cycle were 0.26, 0.42, and 0.51 BW for the medial, lateral, and total contact forces, respectively. The model was subsequently used to predict variations in joint contact pressure that could arise by altering the frontal plane joint alignment. Small variations (±2 deg) in the alignment of the femoral component and tibial insert did not substantially affect the location of contact pressure, but did alter the medio-lateral distribution of load and internal tibia rotation in swing. Thus, the computational framework can be used to virtually assess the coupled influence of both physiological and design factors on in vivo joint mechanics and performance.

References

References
1.
Andriacchi
,
T. P.
,
Mundermann
,
A.
,
Smith
,
R. L.
,
Alexander
,
E. J.
,
Dyrby
,
C. O.
, and
Koo
,
S.
,
2004
, “
A Framework for the in vivo Pathomechanics of Osteoarthritis at the Knee
,”
Ann. Biomed. Eng.
,
32
(
3
), pp.
447
457
.10.1023/B:ABME.0000017541.82498.37
2.
Anderson
,
F. C.
and
Pandy
,
M. G.
,
2001
, “
Dynamic Optimization of Human Walking
,”
ASME J. Biomech. Eng.
,
123
(
5
), pp.
381
390
.10.1115/1.1392310
3.
Taylor
,
W. R.
,
Heller
,
M. O.
,
Bergmann
,
G.
, and
Duda
,
G. N.
, “
Tibio-Femoral Loading During Human Gait and Stair Climbing
J. Orthop. Res.
,
22
(
3
), pp.
625
632
.10.1016/j.orthres.2003.09.003
4.
Shelburne
,
K. B.
,
Torry
,
M. R.
, and
Pandy
,
M. G.
,
2006
, “
Contributions of Muscles, Ligaments, and the Ground Reaction Force to Tibiofemoral Joint Loading During Normal Gait
,”
J. Orthop. Res.
,
24
(
10
), pp.
1983
1990
.10.1002/jor.20255
5.
Shelburne
,
K. B.
,
Torry
,
M. R.
, and
Pandy
,
M. G.
,
2005
, “
Muscle, Ligament, and Joint-Contact Forces at the Knee During Walking
,”
Med. Sci. Sports Exercise
,
37
(
11
), pp.
1948
1956
.10.1249/01.mss.0000180404.86078.ff
6.
Kim
,
H. J.
,
Fernandez
,
J. W.
,
Akbarshahi
,
M.
,
Walter
,
J. P.
,
Fregly
,
B. J.
, and
Pandy
,
M. G.
,
2009
, “
Evaluation of Predicted Knee-Joint Muscle Forces During Gait Using an Instrumented Knee Implant
,”
J. Orthop. Res.
,
27
(
10
), pp.
1326
1331
.10.1002/jor.20876
7.
Arnold
,
E. M.
,
Ward
,
S. R.
,
Lieber
,
R. L.
, and
Delp
,
S. L.
,
2010
, “
A Model of the Lower Limb for Analysis of Human Movement
,”
Ann. Biomed. Eng.
,
38
(
2
), pp.
269
279
.10.1007/s10439-009-9852-5
8.
Wilson
,
D. R.
,
Feikes
,
J. D.
, and
O’Connor
,
J. J.
,
1998
, “
Ligaments And Articular Contact Guide Passive Knee Flexion
,”
J. Biomech.
,
31
(
12
), pp.
1127
1136
.10.1016/S0021-9290(98)00119-5
9.
Delp, S. L., Loan, J. P., Hoy, M. G., Zajac, F. E., Topp, E. L., and Rosen, J. M.,
1990
, “
An Interactive Graphics-Based Model of the Lower Extremity to Study Orthopaedic Surgical Procedures
,”
IEEE Trans. Biomed. Eng.
,
37
(
8
), pp.
757
767
.10.1109/10.102791
10.
Lin
,
Y. C.
,
Walter
,
J. P.
,
Banks
,
S. A.
,
Pandy
,
M. G.
, and
Fregly
,
B. J.
,
2010
, “
Simultaneous Prediction of Muscle and Contact Forces in the Knee During Gait
,”
J. Biomech.
,
43
(
5
), pp.
945
952
.10.1016/j.jbiomech.2009.10.048
11.
Halloran
,
J. P.
,
Ackermann
,
M.
,
Erdemir
,
A.
, and
van den Bogert
,
A. J.
,
2010
, “
Concurrent Musculoskeletal Dynamics and Finite Element Analysis Predicts Altered Gait Patterns to Reduce Foot Tissue Loading
,”
J. Biomech.
,
43
(
14
), pp.
2810
2815
.10.1016/j.jbiomech.2010.05.036
12.
Halloran
,
J. P.
, Ackermann, M.,
Erdemir
,
A.
, and
van den Bogert
,
A. J.
,
2009
, “
Adaptive Surrogate Modeling for Efficient Coupling of Musculoskeletal Control and Tissue Deformation Models
,”
ASME J. Biomech. Eng.
,
131
(
1
), p.
011014
.10.1115/1.3005333
13.
Piazza
,
S. J.
and
Delp
,
S. L.
,
2001
, “
Three-Dimensional Dynamic Simulation of Total Knee Replacement Motion During a Step-Up Task
,”
ASME J. Biomech. En.
,
123
(6), pp.
599
606
.10.1115/1.1406950
14.
Neptune
,
R.
,
1999
, “
Optimization Algorithm Performance in Determining Optimal Controls in Human Movement Analyses
,”
ASME J. Biomech. Eng.
,
121
(2), pp.
249
252
.10.1115/1.2835111
15.
Thelen
,
D. G.
and
Anderson
,
F. C.
,
2006
, “
Using Computed Muscle Control to Generate Forward Dynamic Simulations of Human Walking From Experimental Data
,”
J. Biomech.
,
39
(
6
), pp.
1107
1115
.10.1016/j.jbiomech.2005.02.010
16.
Thelen
,
D. G.
,
Anderson
,
F. C.
, and
Delp
,
S. L.
,
2003
, “
Generating Dynamic Simulations of Movement Using Computed Muscle Control
,”
J. Biomech.
,
36
(
3
), pp.
321
328
.10.1016/S0021-9290(02)00432-3
17.
Fregly
,
B. J.
,
Besier
,
T. F.
,
Lloyd
,
D. G.
,
Delp
,
S. L.
,
Banks
,
S. A.
,
Pandy
,
M. G.
, and
D'Lima
,
D. D.
,
2012
, “
Grand Challenge Competition to Predict in vivo Knee Loads
,”
J. Orthop. Res.
,
30
(
4
), pp.
503
513
.10.1002/jor.22023
18.
D'Lima
,
D. D.
,
Townsend
,
C. P.
,
Arms
,
S. W.
,
Morris
,
B. A.
,
Colwell
,
C. W. Jr.
,
2005
, “
An Implantable Telemetry Device to Measure Intra-Articular Tibial Forces
,”
J. Biomech.
,
38
(
2
), pp.
299
304
.10.1016/j.jbiomech.2004.02.011
19.
Shin
,
C. S.
,
Chaudhari
,
A. M.
, and
Andriacchi
,
T. P.
,
2007
, “
The Influence of Deceleration Forces on ACL Strain During Single-Leg Landing: A Simulation Study
,”
J. Biomech.
,
40
(
5
), pp.
1145
1152
.10.1016/j.jbiomech.2006.05.004
20.
Davies
,
H.
,
Unwin
,
A.
, and
Aichroth
,
P.
,
2004
, “
The Posterolateral Corner of the Knee: Anatomy, Biomechanics and Management of Injuries
,”
Injury
,
35
(
1
), pp.
68
75
.10.1016/S0020-1383(03)00094-9
21.
Edwards
,
A.
,
Bull
,
A. M.
, and
Amis
,
A. A.
,
2007
, “
The Attachments of the Fiber Bundles of the Posterior Cruciate Ligament: An Anatomic Study
,”
Arthroscopy
,
23
(
3
), pp.
284
290
.10.1016/j.arthro.2006.11.005
22.
Petersen
,
W. M. D.
, and
Zantop
,
T. M. D.
,
2007
, “
Anatomy of the Anterior Cruciate Ligament with Regard to Its Two Bundles
,”
Clin. Orthop. Relat. Res.
,
454
, pp.
35
47
.
23.
Sugita
,
T.
, and
Amis
,
A. A.
,
2001
, “
Anatomic and Biomechanical Study of the Lateral Collateral and Popliteofibular Ligaments
,”
Am. J. Sports Med.
,
29
(
4
), pp.
466
472
.
24.
Liu, F., Yue, B., Gadikota, H. R., Kozanek, M., Liu, W., Gill, T. J., Rubash, H. E., and Li, G.,
2010
, “
Morphology of the Medial Collateral Ligament of the Knee
,”
J. Orthop. Surg. Res.
,
5
, p.
69
.10.1186/1749-799X-5-69
25.
LaPrade, R. F., Ly, T. V., Wentorf, F. A., and Engebretsen, L.,
2003
, “
The Posterolateral Attachments of the Knee: A Qualitative and Quantitative Morphologic Analysis of the Fibular Collateral Ligament, Popliteus Tendon, Popliteofibular Ligament, and Lateral Gastrocnemius Tendon
,”
Am. J. Sports Med.
,
31
(
6
), p.
854
860
.
26.
van den Bergen, G., 2003,
Collision Detection in Interactive 3D Environments
, Morgan Kaufmann Publishers, an Imprint of Elsevier, San Francisco, CA, pp.
192
209
.
27.
Bei
,
Y.
and
Fregly
,
B. J.
,
2004
, “
Multibody Dynamic Simulation of Knee Contact Mechanics
,’
Med. Eng. Phys.
,
26
(
9
), p.
777
789
.10.1016/j.medengphy.2004.07.004
28.
Gottschalk
,
S.
, Lin, M. C., and Manocha, D.,
1996
, “
OBBTree: A Hierarchical Structure for Rapid Interference Detection
,” SIGGRAPH '96 Proceedings of the 23rd annual conference on Computer graphics and interactive techniques, pp.
171
180
.
29.
Schmidl, H., Walker, N., Lin, M.,
2004
, “
CAB: Fast Update of OBB Trees for Collision Detection Between Articulated Bodies
,”
J. Graph. Tool
,
9
, pp.
1
9
.10.1080/10867651.2004.10504891
30.
Kurt, S. M., Jewett, C. W., Bergstrom, J. S., Foulds, J. R., and Edidin, A. A.,
2002
, “
Miniature Specimen Shear Punch Test for UHMWPE Used in Total Joint Replacements
,”
Biomaterials
,
23
(
9
), pp.
1907
1919
.10.1016/S0142-9612(01)00316-7
31.
Hindmarsh, A. C., Brown, P. N., Grant, K. E., Lee, S. L., Serban, R., Shumaker, D. E., and Woodward, C. S.,
2005
, “
SUNDIALS: Suite of Nonlinear and Differential/Algebraic Equation Solvers
,”
ACM Trans. Math. Softw.
,
31
(
3
), pp.
363
396
.10.1145/1089014.1089020
32.
Thelen
,
D. G.
,
2003
, “
Adjustment of Muscle Mechanics Model Parameters to Simulate Dynamic Contractions in Older Adults
,”
ASME J. Biomech. Eng.
,
125
(
1
), pp.
70
77
.10.1115/1.1531112
33.
Delp
,
S. L.
and
Loan
,
J. P.
,
1995
, “
A Graphics-Based Software System to Develop and Analyze Models of Musculoskeletal Structures
,”
Comput. Biol. Med.
,
25
(
1
), pp.
21
34
.10.1016/0010-4825(95)98882-E
34.
Grood
,
E. S.
and
Suntay
,
W. J.
,
1983
, “
A Joint Coordinate System for the Clinical Description of Three-Dimensional Motions: Application to the Knee
,”
ASME J. Biomech. Eng.
,
105
(
2
), pp.
136
144
.10.1115/1.3138397
35.
Arnold, A. S., Anderson, F. C., Pandy, M. G., and Delp, S. L.,
2005
, “
Muscular Contributions to Hip and Knee Extension During the Single Limb Stance Phase of Normal Gait: A Framework for Investigating the Causes of Crouch Gait
,”
J. Biomech.
,
38
(
11
), pp.
2181
2189
.10.1016/j.jbiomech.2004.09.036
36.
Happee
,
R.
,
1994
, “
Inverse Dynamic Optimization Including Muscular Dynamics, a New Simulation Method Applied to Goal Directed Movements
,”
J. Biomech.
,
27
(
7
), p.
953
960
.10.1016/0021-9290(94)90267-4
37.
Seireg
,
A.
, and
Arvikar
, R. J.,
1975
, “
The Prediction of Muscular Lad Sharing and Joint Forces in the Lower Extremities During Walking
,”
J. Biomech.
,
8
(
2
), pp.
89
102
.10.1016/0021-9290(75)90089-5
38.
Wilson
,
D.
, and
O’Connor
,
J.
,
1997
, “
A Three-Dimensional Geometric Model of the Knee for the Study of Joint Forces in Gait
,”
Gait and Posture
,
5
(2), pp. 108–115.
39.
Yamaguchi
,
G. T.
and
Zajac
,
F. E.
,
1989
, “
A Planar Model of the Knee Joint to Characterize the Knee Extensor Mechanism
,”
J. Biomech.
,
22
, p.
1
10
.10.1016/0021-9290(89)90179-6
40.
Thelen
,
D. G.
,
Anderson
,
F. C.
, and
Delp
,
S. L.
,
2003
, “
Generating Dynamic Simulations of Movement Using Computed Muscle Control
,”
J. Biomech.
,
36
(
3
), p.
321
328
.10.1016/S0021-9290(02)00432-3
41.
Shelburne
,
K. B.
,
Torry
,
M. R.
, and
Pandy
,
M. G.
,
2005
, “
Effect of Muscle Compensation on Knee Instability During ACL-Deficient Gait
,”
Med. Sci. Sports Exercise
,
37
(
4
), pp.
642
648
.10.1249/01.MSS.0000158187.79100.48
42.
Shao, Q., MacLeod, T. D., Manal, K., and Buchanan, T. S.,
2011
, “
Estimation of Ligament Loading and Anterior Tibial Translation in Healthy and ACL-Deficient Knees During Gait and the Influence of Increasing Tibial Slope Using EMG-Driven Approach
,”
Ann. Biomed. Eng.
,
39
(
1
), pp.
110
121
.10.1007/s10439-010-0131-2
43.
Lin, Y. C., Farr, J., Carter, K., and Fregly, B. J.,
2006
, “
Response Surface Optimization for Joint Contact Model Evaluation
,”
J. Appl. Biomech.
,
22
(
2
), pp.
120
130
.
44.
Halloran
,
J. P.
, Petrella, A. J., Rullkoetter, P. J., Easley, S. K., Anthony J. Petrella, Paul J. Rullkoetter and Sarah K. Easley,
2005
, “
Comparison of Deformable and Elastic Foundation Finite Element Simulations for Predicting Knee Replacement Mechanics
,”
ASME J. Biomech. Eng.
,
127
(
5
), pp.
813
818
.10.1115/1.1992522
45.
Jeffery
,
R. S.
,
Morris
,
R. W.
, and
Denham
,
R. A.
,
1991
, “
Coronal Alignment After Total Knee Replacement
,”
J. Bone Jt. Surg., Br.
Vol.,
73
(
5
), pp.
709
714
.
46.
Fang
,
D. M.
,
Ritter
,
M. A.
, and
Davis
,
K. W.
,
2009
, “
Coronal Alignment in Total Knee Arthroplasty: Just How Important is It?
,”
J. Arthroplasty
,
24
(
6
), pp.
39
43
.10.1016/j.arth.2009.04.034
47.
Werner, F. W., Ayers, D. C., Maletsky, L. P., and Rullkoetter, P. J.,
2005
, “
The Effect of Valgus/Varus Malalignment on Load Distribution in Total Knee Replacements
,”
J. Biomech.
,
38
(
2
), pp.
349
355
.10.1016/j.jbiomech.2004.02.024
48.
Crowninshield
,
R. D.
and
Brand
,
R. A.
,
1981
, “
A Physiologically Based Criterion of Muscle Force Prediction in Locomotion
,”
J. Biomech.
,
14
(
11
), pp.
793
801
.10.1016/0021-9290(81)90035-X
49.
Anderson
,
F. C.
and
Pandy
,
M. G.
,
2001
, “
Static and Dynamic Optimization Solutions for Gait are Practically Equivalent
,”
J. Biomech.
,
34
(
2
), pp.
153
161
.10.1016/S0021-9290(00)00155-X
50.
Delp, S. L., Anderson, F. C., Arnold, A.S., Loan, P., Habib, A., John, C. T., Guendelman, E., Thelen, D. G., 2007, “OpenSim: Open-Source Software to Create and Analyze Dynamic Simulations of Movement,” IEEE Trans. Biomed. Eng.,
54
(11), pp. 1940–1950.
You do not currently have access to this content.