Detailed knowledge of knee kinematics and dynamic loading is essential for improving the design and outcomes of surgical procedures, tissue engineering applications, prosthetics design, and rehabilitation. This study used publicly available data provided by the “Grand Challenge Competition to Predict in-vivo Knee Loads” for the 2013 American Society of Mechanical Engineers Summer Bioengineering Conference (Fregly et al., 2012, “Grand Challenge Competition to Predict in vivo Knee Loads,” J. Orthop. Res., 30, pp. 503–513) to develop a full body, musculoskeletal model with subject specific right leg geometries that can concurrently predict muscle forces, ligament forces, and knee and ground contact forces. The model includes representation of foot/floor interactions and predicted tibiofemoral joint loads were compared to measured tibial loads for two different cycles of treadmill gait. The model used anthropometric data (height and weight) to scale the joint center locations and mass properties of a generic model and then used subject bone geometries to more accurately position the hip and ankle. The musculoskeletal model included 44 muscles on the right leg, and subject specific geometries were used to create a 12 degrees-of-freedom anatomical right knee that included both patellofemoral and tibiofemoral articulations. Tibiofemoral motion was constrained by deformable contacts defined between the tibial insert and femoral component geometries and by ligaments. Patellofemoral motion was constrained by contact between the patellar button and femoral component geometries and the patellar tendon. Shoe geometries were added to the feet, and shoe motion was constrained by contact between three shoe segments per foot and the treadmill surface. Six-axis springs constrained motion between the feet and shoe segments. Experimental motion capture data provided input to an inverse kinematics stage, and the final forward dynamics simulations tracked joint angle errors for the left leg and upper body and tracked muscle length errors for the right leg. The one cycle RMS errors between the predicted and measured tibia contact were 178 N and 168 N for the medial and lateral sides for the first gait cycle and 209 N and 228 N for the medial and lateral sides for the faster second gait cycle. One cycle RMS errors between predicted and measured ground reaction forces were 12 N, 13 N, and 65 N in the anterior-posterior, medial-lateral, and vertical directions for the first gait cycle and 43 N, 15 N, and 96 N in the anterior-posterior, medial-lateral, and vertical directions for the second gait cycle.

References

1.
Andriacchi
,
T. P.
,
Mundermann
,
A.
,
Smith
,
R. L.
,
Alexander
,
E. J.
,
Dyrby
,
C. O.
, and
Koo
,
S.
,
2004
, “
A Framework for the in vivo Pathomechanics of Osteoarthritis at the Knee
,”
Ann. Biomed. Eng.
,
32
, pp.
447
457
.10.1023/B:ABME.0000017541.82498.37
2.
Wimmer
M. A.
, and
Andriacchi
,
T. P.
,
1997
, “
Tractive Forces During Rolling Motion of the Knee: Implications for Wear in Total Knee Replacement
,”
J. Biomech.
,
30
, pp.
131
137,
.10.1016/S0021-9290(96)00112-1
3.
Sathasivam
S.
, and
Walker
,
P. S.
,
1998
, “
Computer Model to Predict Subsurface Damage in Tibial Inserts of Total Knees
,”
J. Orthop. Res.
,
16
, pp.
564
571
.10.1002/jor.1100160507
4.
Fregly
,
B. J.
,
Besier
,
T. F.
,
Lloyd
,
D. G.
,
Delp
,
S. L.
,
Banks
,
S. A.
,
Pandy
,
M. G.
, and
D'Lima
,
D. D.
,
2012
, “
Grand Challenge Competition to Predict in vivo Knee Loads
,”
J. Orthop. Res.
,
30
, pp.
503
513
.10.1002/jor.22023
5.
Mündermann
,
A.
,
Dyrby
,
C. O.
,
D'Lima
,
D. D.
,
Colwell
,
C. W.
, and
Andriacchi
,
T. P.
,
2008
, “
In vivo Knee Loading Characteristics During Activities of Daily Living as Measured by an Instrumented Total Knee Replacement
,”
J. Orthop. Res.
,
26
, pp.
1167
1172
.10.1002/jor.20655
6.
Heinlein
,
B.
,
Kutzner
,
I.
,
Graichen
,
F.
,
Bender
,
A.
,
Rohlmann
,
A.
,
Halder
,
A. M.
,
Beier
,
A.
, and
Bergmann
,
G.
,
2009
ESB Clinical Biomechanics Award 2008: Complete Data of Total Knee Replacement Loading for Level Walking and Stair Climbing Measured in vivo With a Follow-Up of 6-10 Months
,”
Clin. Biomech. (Bristol, Avon)
,
24
, pp.
315
326
.10.1016/j.clinbiomech.2009.01.011
7.
Kutzner
,
I.
,
Heinlein
,
B.
,
Graichen
,
F.
,
Bender
,
A.
,
Rohlmann
,
A.
,
Halder
,
A.
,
Beier
,
A.
, and
Bergmann
,
G.
,
2010
, “
Loading of the Knee Joint During Activities of Daily Living Measured in vivo in Five Subjects
,”
J. Biomech.
,
43
, pp.
2164
2173
.10.1016/j.jbiomech.2010.03.046
8.
Taylor
,
W. R.
,
Heller
,
M. O.
,
Bergmann
,
G.
, and
Duda
,
G. N.
,
2004
, “
Tibio-Femoral Loading During Human Gait and Stair Climbing
,”
J. Orthop. Res.
,
22
, pp.
625
632
.10.1016/j.orthres.2003.09.003
9.
Anderson
,
F. C.
, and
Pandy
,
M. G.
,
2001
, “
Dynamic Optimization of Human Walking
,”
ASME J. Biomech. Eng.
,
123
(5), pp.
381
390
.10.1115/1.1392310
10.
Piazza
,
S. J.
,
2006
, “
Muscle-Driven Forward Dynamic Simulations for the Study of Normal and Pathological Gait
,”
J. Neuroeng. Rehabil.
,
3
, Paper No. 5.10.1186/1743-0003-3-5
11.
Piazza
,
S. J.
, and
Delp
,
S. L.
,
2001
, “
Three-Dimensional Dynamic Simulation of Total Knee Replacement Motion During a Step-Up Task
,”
ASME J. Biomech. Eng.
,
123
(6), pp.
599
606
.10.1115/1.1406950
12.
Thelen
,
D. G.
, and
Anderson
,
F. C.
,
2006
, “
Using Computed Muscle Control to Generate Forward Dynamic Simulations of Human Walking From Experimental Data
,”
J. Biomech.
,
39
, pp.
1107
1115
.10.1016/j.jbiomech.2005.02.010
13.
Kim
,
H. J.
,
Fernandez
,
J. W.
,
Akbarshahi
,
M.
,
Walter
,
J. P.
,
Fregly
,
B. J.
, and
Pandy
,
M. G.
,
2009
, “
Evaluation of Predicted Knee-Joint Muscle Forces During Gait Using an Instrumented Knee Implant
,”
J. Orthop. Res.
,
27
, pp.
1326
1331
.10.1002/jor.20876
14.
Lin
,
Y. C.
,
Walter
,
J. P.
,
Banks
,
S. A.
,
Pandy
,
M. G.
, and
Fregly
,
B. J.
,
2010
, “
Simultaneous Prediction of Muscle and Contact Forces in the Knee During Gait
,”
J. Biomech.
,
43
, pp.
945
952
.10.1016/j.jbiomech.2009.10.048
15.
Schipplein
,
O. D.
, and
Andriacchi
,
T. P.
,
1991
, “
Interaction Between Active and Passive Knee Stabilizers During Level Walking
,”
J. Orthop. Res.
,
9
, pp.
113
119
.10.1002/jor.1100090114
16.
Lundberg
,
H. J.
,
Foucher
,
K. C.
, and
Wimmer
,
M. A.
,
2009
, “
A Parametric Approach to Numerical Modeling of TKR Contact Forces
,”
J. Biomech.
,
42
, pp.
541
545
.10.1016/j.jbiomech.2008.11.030
17.
Shelburne
,
K. B.
,
Torry
,
M. R.
, and
Pandy
,
M. G.
,
2005
, “
Muscle, Ligament, and Joint-Contact Forces at the Knee During Walking
,”
Med. Sci. Sports Exerc.
,
37
, pp.
1948
1956
.10.1249/01.mss.0000180404.86078.ff
18.
Shelburne
,
K. B.
,
Torry
,
M. R.
, and
Pandy
,
M. G.
,
2006
, “
Contributions of Muscles, Ligaments, and the Ground-Reaction Force to Tibiofemoral Joint Loading During Normal Gait
,”
J. Orthop. Res.
,
24
, pp.
1983
1990
.10.1002/jor.20255
19.
D'Lima
,
D. D.
,
Patil
,
S.
,
Steklov
,
N.
,
Slamin
,
J. E.
, and
Colwell
,
C. W.
, Jr.
,
2005
“The Chitranjan Ranawat Award: in vivo Knee Forces After Total Knee Arthroplasty,”
Clin. Orthop. Relat. Res.
,
440
, pp.
45
49
.
20.
Delp
,
S. L.
, and
Loan
,
J. P.
,
1995
, “
A Graphics-Based Software System to Develop and Analyze Models of Musculoskeletal Structures
,”
Comput. Biol. Med.
,
25
, pp.
21
34
.10.1016/0010-4825(95)98882-E
21.
Machado
,
M.
,
Moreira
,
P.
,
Flores
,
P.
, and
Lankarani
,
H.
,
2012
, “
Compliant Contact Force Models in Multibody Dynamics: Evolution of the Hertz Contact Theory
,”
Mech. Mach. Theory
,
53
, pp.
99
121
.10.1016/j.mechmachtheory.2012.02.010
22.
Guess
,
T. M.
, and
Maletsky
,
L. P.
,
2005
, “
Computational Modelling of a Total Knee Prosthetic Loaded in a Dynamic Knee Simulator
,”
Med. Eng. Phys.
,
27
, pp.
357
367
.10.1016/j.medengphy.2004.11.003
23.
Blankevoort
,
L.
,
Huiskes
,
R.
, and
de Lange
,
A.
,
1991
, “
Recruitment of Knee Joint Ligaments
,”
ASME J. Biomech. Eng.
,
113
(1), pp.
94
103
.10.1115/1.2894090
24.
Wismans
,
J.
,
Veldpaus
,
F.
,
Janssen
,
J.
,
Huson
,
A.
, and
Struben
,
P.
,
1980
, “
A Three-Dimensional Mathematical Model of the Knee-Joint
,”
J. Biomech.
,
13
, pp.
677
685
.10.1016/0021-9290(80)90354-1
25.
Guess
,
T. M.
,
Liu
,
H.
,
Bhashyam
,
S.
, and
Thiagarajan
,
G.
,
2011
, “
A Multibody Knee Model With Discrete Cartilage Prediction of Tibio-Femoral Contact Mechanics
,”
Comput. Methods Biomech. Biomed. Eng.
,
16
, pp.
256
270
.10.1080/10255842.2011.617004
26.
Guess
,
T. M.
,
Thiagarajan
,
G.
,
Kia
,
M.
, and
Mishra
,
M.
,
2010
, “
A Subject Specific Multibody Model of the Knee With Menisci
,”
Med. Eng. Phys.
,
32
, pp.
505
515
.10.1016/j.medengphy.2010.02.020
27.
Guess
,
T. M.
, and
Stylianou
,
A.
,
2012
, “
Simulation of Anterior Cruciate Ligament Deficiency in a Musculoskeletal Model With Anatomical Knees
,”
Open Biomed. Eng. J.
,
6
, pp.
23
32
.
28.
Nigg
,
B. M.
,
Macintosh
,
B. R.
, and
Mester
,
J.
,
2000
,
Biomechanics and Biology of Movement
,
Human Kinetics
,
Champaign, IL
.
29.
Schumacher
,
G. H.
, and
Wolff
,
E.
,
1966
, “
Dry Weight and Physiological Cross Section of Human Skeletal Muscles. I. Dry Weight
,”
Anat. Anz.
,
118
, pp.
317
330
.
30.
Schumacher
,
G. H.
, and
Wolff
,
E.
,
1966
, “
Dry Weight and Physiological Cross Section of Human Skeletal Muscles. II. Physiological Cross Section
,”
Anat. Anz.
,
119
, pp.
259
269
.
31.
Schumacher
,
G. H.
, and
Wolff
,
E.
,
1966
, “
Dry Weight and Physiological Cross Section of Human Skeletal Muscles. 3. Relationship Between Dry Weight and Physiological Cross Section
,”
Anat. Anz.
,
119
, pp.
270
283
.
32.
Neptune
,
R. R.
,
Wright
,
I. C.
, and
Van Den Bogert
,
A. J.
,
2000
, “
A Method for Numerical Simulation of Single Limb Ground Contact Events: Application to Heel-Toe Running
,”
Comput. Methods Biomech. Biomed. Eng.
,
3
, pp.
321
334
.10.1080/10255840008915275
You do not currently have access to this content.