Ascending thoracic aortic aneurysms (ATAA) have a high propensity for dissection, which occurs when the hemodynamic load exceeds the mechanical strength of the aortic media. Despite our recognition of this essential fact, the complex architecture of the media has made a predictive model of medial failure—even in the relatively simple case of the healthy vessel—difficult to achieve. As a first step towards a general model of ATAA failure, we characterized the mechanical behavior of healthy ascending thoracic aorta (ATA) media using uniaxial stretch-to-failure in both circumferential (n = 11) and axial (n = 11) orientations and equibiaxial extensions (n = 9). Both experiments demonstrated anisotropy, with higher tensile strength in the circumferential direction (2510 ± 439.3 kPa) compared to the axial direction (750 ± 102.6 kPa) for the uniaxial tests, and a ratio of 1.44 between the peak circumferential and axial loads in equibiaxial extension. Uniaxial tests for both orientations showed macroscopic tissue failure at a stretch of 1.9. A multiscale computational model, consisting of a realistically aligned interconnected fiber network in parallel with a neo-Hookean solid, was used to describe the data; failure was modeled at the fiber level, with an individual fiber failing when stretched beyond a critical threshold. The best-fit model results were within the 95% confidence intervals for uniaxial and biaxial experiments, including both prefailure and failure, and were consistent with properties of the components of the ATA media.

References

References
1.
Isselbacher
,
E. M.
,
2005
, “
Thoracic and Abdominal Aortic Aneurysms
,”
Circulation
,
111
(
6
), pp.
816
828
.10.1161/01.CIR.0000154569.08857.7A
2.
Davies
,
R. R.
,
Goldstein
,
L. J.
,
Coady
,
M. A.
,
Tittle
,
S. L.
,
Rizzo
,
J. A.
,
Kopf
,
G. S.
, and
Elefteriades
,
J. A.
,
2002
, “
Yearly Rupture or Dissection Rates for Thoracic Aortic Aneurysms: Simple Prediction Based on Size
,”
Ann. Thorac. Surg.
,
73
(
1
), pp.
17
27
.10.1016/S0003-4975(01)03236-2
3.
Elefteriades
,
J. A.
,
2002
, “
Natural History of Thoracic Aortic Aneurysms: Indications for Surgery, and Surgical Versus Nonsurgical Risks
,”
Ann. Thorac. Surg.
,
74
(
5
), pp.
S1877
1880
.10.1016/S0003-4975(02)04147-4
4.
Bonnichsen
,
C. R.
,
Sundt
,
T. M.
, III
,
Anavekar
,
N. S.
,
Foley
,
T. A.
,
Morris
,
M. F.
,
Martinez
,
M. W.
,
Williamson
,
E. E.
,
Glockner
,
J. F.
, and
Araoz
,
P. A.
,
2011
, “
Aneurysms of the Ascending Aorta and Arch: The Role of Imaging in Diagnosis and Surgical Management
,”
Expert Rev. Cardiovasc. Ther.
,
9
(
1
), pp.
45
61
.10.1586/erc.10.168
5.
Guo
,
D.
,
Hasham
,
S.
,
Kuang
,
S.-Q.
,
Vaughan
,
C. J.
,
Boerwinkle
,
E.
,
Chen
,
H.
,
Abuelo
,
D.
,
Dietz
,
H. C.
,
Basson
,
C. T.
,
Shete
,
S. S.
, and
Milewicz
,
D. M.
,
2001
, “
Familial Thoracic Aortic Aneurysms and Dissections Genetic Heterogeneity With a Major Locus Mapping to 5q13-14
,”
Circulation
,
103
(
20
), pp.
2461
2468
.10.1161/01.CIR.103.20.2461
6.
Pasta
,
S.
,
Phillippi
,
J. A.
,
Gleason
,
T. G.
, and
Vorp
,
D. A.
,
2012
, “
Effect of Aneurysm on the Mechanical Dissection Properties of the Human Ascending Thoracic Aorta
,”
J. Thorac. Cardiovasc. Surg.
,
143
(
2
), pp.
460
467
.10.1016/j.jtcvs.2011.07.058
7.
Clouse
,
W. D.
,
Hallett
,
J. W.
, Jr.
,
Schaff
,
H.
V
.
,
Spittell
,
P. C.
,
Rowland
,
C. M.
,
Ilstrup
,
D. M.
, and
Melton
,
L. J.
, II
I
,
2004
, “
Acute Aortic Dissection: Population-Based Incidence Compared With Degenerative Aortic Aneurysm Rupture
,”
Mayo Clin. Proc.
,
79
(
2
), pp.
176
180
.10.4065/79.2.176
8.
Pape
,
L. A.
,
Tsai
,
T. T.
,
Isselbacher
,
E. M.
,
Oh
,
J. K.
,
O’Gara
,
P. T.
,
Evangelista
,
A.
,
Fattori
,
R.
,
Meinhardt
,
G.
,
Trimarchi
,
S.
,
Bossone
,
E.
,
Suzuki
,
T.
,
Cooper
,
J. V.
,
Froehlich
,
J. B.
,
Nienaber
,
C. A.
,
Eagle
,
K. A.
, “
Aortic Diameter ≥ or = 5.5 cm Is Not a Good Predictor of Type A Aortic Dissection: Observations From the International Registry of Acute Aortic Dissection (IRAD)
,” 2007,
Circulation
,
116
(
10
), pp.
1120
1127
.10.1161/CIRCULATIONAHA.107.702720
9.
Tam
,
A. S.
,
Catherine Sapp
,
M.
, and
Roach
,
M. R.
,
1998
, “
The Effect of Tear Depth on the Propagation of Aortic Dissections in Isolated Porcine Thoracic Aorta
,”
J. Biomech.
,
31
(
7
), pp.
673
676
.10.1016/S0021-9290(98)00058-X
10.
Sommer
,
G.
,
Gasser
,
T. C.
,
Regitnig
,
P.
,
Auer
,
M.
, and
Holzapfel
,
G. A.
,
2008
, “
Dissection Properties of the Human Aortic Media: An Experimental Study
,”
ASME J. Biomech. Eng.
,
130
(
2
), p.
021007
.10.1115/1.2898733
11.
Guan
,
J.
,
Chu
,
B.
,
Zhang
,
Y.
,
Zeng
,
K.
, and
Qiao
,
A.
,
2010
, “
Three-Dimensional Computational Simulation of Bypassed Aortic Dissection
,” Proceedings of the 2010 International Conference on Biomedical Engineering and Computer Science (ICBECS), April 23–25, 2010, pp.
1
4
. Available at: http://ieeexplore.ieee.org/xpl/login.jsp?tp=&arnumber=5462494&url=http%3A%2F%2Fieeexplore.ieee.org%2Fxpls%2Fabs_all.jsp%3Farnumber%3D5462494
12.
Gasser
,
T. C.
, and
Holzapfel
,
G. A.
,
2006
, “
Modeling the Propagation of Arterial Dissection
,”
Eur. J. Mech. – A/Solids
,
25
(
4
), pp.
617
633
.10.1016/j.euromechsol.2006.05.004
13.
Li
,
B.
,
2013
, “
Mathematical Modelling of Aortic Dissection
,” Ph.D. thesis, University of Glasgow, Glasgow, UK.
14.
Lai
,
V. K.
,
Lake
,
S. P.
,
Frey
,
C. R.
,
Tranquillo
,
R. T.
, and
Barocas
,
V. H.
,
2012
, “
Mechanical Behavior of Collagen-Fibrin Co-Gels Reflects Transition From Series to Parallel Interactions With Increasing Collagen Content
,”
ASME J. Biomech. Eng.
,
134
(
1
), p.
011004
.10.1115/1.4005544
15.
Stylianopoulos
,
T.
, and
Barocas
,
V. H.
,
2007
, “
Multiscale, Structure-Based Modeling for the Elastic Mechanical Behavior of Arterial Walls
,”
ASME J. Biomech. Eng.
,
129
(
4
), pp.
611
618
.10.1115/1.2746387
16.
Witzenburg
,
C.
,
Raghupathy
,
R.
,
Kren
,
S. M.
,
Taylor
,
D. A.
, and
Barocas
, V
. H.
,
2012
, “
Mechanical Changes in the Rat Right Ventricle With Decellularization
,”
ASME J. Biomech.
,
45
(
5
), pp.
842
849
.10.1016/j.jbiomech.2011.11.025
17.
Hadi
,
M. F.
,
Sander
,
E. A.
, and
Barocas
, V
. H.
,
2012
, “
Multiscale Model Predicts Tissue-Level Failure From Collagen Fiber-Level Damage
,”
ASME J. Biomech. Eng.
,
134
(
9
), p.
091005
.10.1115/1.4007097
18.
Chandran
,
P. L.
, and
Barocas
, V
. H.
,
2007
, “
Deterministic Material-Based Averaging Theory Model of Collagen Gel Micromechanics
,”
ASME J. Biomech. Eng.
,
129
(
2
), pp.
137
147
.10.1115/1.2472369
19.
Sokolis
,
D. P.
,
Boudoulas
,
H.
, and
Karayannacos
,
P. E.
,
2008
, “
Segmental Differences of Aortic Function and Composition: Clinical Implications
,”
Hellenic J. Cardiol.
,
49
, pp.
145
154
.
20.
Timmins
,
L. H.
,
Wu
,
Q.
,
Yeh
,
A. T.
,
Moore
,
J. E.
, and
Greenwald
,
S. E.
,
2010
, “
Structural Inhomogeneity and Fiber Orientation in the Inner Arterial Media
,”
Am. J. Physiol. Heart Circ. Physiol.
,
298
(
5
), pp.
H1537
H1545
.10.1152/ajpheart.00891.2009
21.
Hiltner
,
A.
,
Cassidy
,
J. J.
, and
Baer
,
E.
,
1985
, “
Mechanical Properties of Biological Polymers
,”
Ann. Rev. Mater. Sci.
,
15
(
1
), pp.
455
482
.
22.
Hoffman
,
A. S.
,
Grande
,
L. A.
, and
Park
,
J. B.
,
1977
, “
Sequential Enzymolysis of Human Aorta and Resultant Stress-Strain Behavior
,”
Biomater. Med. Devices Artif. Organs
,
5
(
2
), pp.
121
145
.
23.
Haskett
,
D.
,
Johnson
,
G.
,
Zhou
,
A.
,
Utzinger
,
U.
, and
Vande Geest
,
J.
,
2010
, “
Microstructural and Biomechanical Alterations of the Human Aorta as a Function of Age and Location
,”
Biomech. Model. Mechanobiol.
,
9
(
6
), pp.
725
736
.10.1007/s10237-010-0209-7
24.
Haslach
,
H. W.
,
2010
,
Maximum Dissipation Non-Equilibrium Thermodynamics and its Geometric Structure
,
Springer
,
New York.
25.
Winlove
,
C. P.
, and
Parker
,
K. H.
,
1987
, “
The Influence of the Elastin Lamellae on Mass Transport in the Arterial Wall
,”
Adv. Microcirc.
,
13
, pp.
74
81
.
26.
Holzapfel
,
G. A.
,
2001
, “
Biomechanics of Soft Tissue
,”
Handb. Mater. Behav. Models
,
3
, pp.
1049
1063
.
27.
Roach
,
M. R.
, and
Burton
,
A. C.
,
1957
, “
The Reason for the Shape of the Distensibility Curves of Arteries
,”
Can. J. Biochem. Physiol.
,
35
(
8
), pp.
681
690
.10.1139/o57-080
28.
Han
,
H. C.
, and
Fung
,
Y. C.
,
1991
, “
Species Dependence of the Zero-Stress State of Aorta: Pig Versus Rat
,”
ASME J. Biomech. Eng.
,
113
(
4
), pp.
446
451
.10.1115/1.2895425
29.
Alford
,
P. W.
, and
Taber
,
L. A.
,
2008
, “
Computational Study of Growth and Remodeling in the Aortic Arch
,”
Comput. Methods Biomech. Biomed. Eng.
,
11
(
5
), pp.
525
538
.10.1080/10255840801930710
30.
García-Herrera
,
C. M.
,
Atienza
,
J. M.
,
Rojo
,
F. J.
,
Claes
,
E.
,
Guinea
,
G. V.
,
Celentano
,
D. J.
,
García-Montero
,
C.
, and
Burgos
,
R. L.
,
2012
, “
Mechanical Behaviour and Rupture of Normal and Pathological Human Ascending Aortic Wall
,”
Med. Biol. Eng. Comput.
,
50
(
6
), pp.
559
566
.10.1007/s11517-012-0876-x
31.
Vorp
,
D. A.
,
Schiro
,
B. J.
,
Ehrlich
,
M. P.
,
Juvonen
,
T. S.
,
Ergin
,
M. A.
, and
Griffith
,
B. P.
,
2003
, “
Effect of Aneurysm on the Tensile Strength and Biomechanical Behavior of the Ascending Thoracic Aorta
,”
Ann. Thorac. Surg.
,
75
(
4
), pp.
1210
1214
.10.1016/S0003-4975(02)04711-2
32.
Nicosia
,
M. A.
,
Kasalko
,
J. S.
,
Cochran
,
R. P.
,
Einstein
,
D. R.
, and
Kunzelman
,
K. S.
,
2002
, “
Biaxial Mechanical Properties of Porcine Ascending Aortic Wall Tissue
,”
J. Heart Valve Dis.
,
11
(
5
), pp.
680
686
.
33.
Pins
,
G. D.
,
Huang
,
E. K.
,
Christiansen
,
D. L.
, and
Silver
,
F. H.
,
1997
, “
Effects of Static Axial Strain on the Tensile Properties and Failure Mechanisms of Self-Assembled Collagen Fibers
,”
J. Appl. Polym. Sci.
,
63
(
11
), pp.
1429
1440
.10.1002/(SICI)1097-4628(19970314)63:11<1429::AID-APP5>3.0.CO;2-O
34.
Okamoto
,
R. J.
,
Xu
,
H.
,
Kouchoukos
,
N. T.
,
Moon
,
M. R.
, and
Sundt
,
T. M.
, III
,
2003
, “
The Influence of Mechanical Properties on Wall Stress and Distensibility of the Dilated Ascending Aorta
,”
J. Thorac. Cardiovasc. Surg.
,
126
(
3
), pp.
842
850
.10.1016/S0022-5223(03)00728-1
35.
Mukherjee
,
D. P.
,
Kagan
,
H. M.
,
Jordan
,
R. E.
, and
Franzblau
,
C.
,
1976
, “
Effect of Hydrophobic Elastin Ligands on the Stress-Strain Properties of Elastin Fibers
,”
Connect. Tissue Res.
,
4
(
3
), pp.
177
179
.10.3109/03008207609152216
36.
Koenders
,
M. M. J. F.
,
Yang
,
L.
,
Wismans
,
R. G.
,
van der Werf
,
K. O.
,
Reinhardt
,
D. P.
,
Daamen
,
W.
,
Bennink
,
M. L.
,
Dijkstra
,
P. J.
,
van Kuppevelt
,
T. H.
, and
Feijen
,
J.
,
2009
, “
Microscale Mechanical Properties of Single Elastic Fibers: The Role of Fibrillin–Microfibrils
,”
Biomaterials
,
30
(
13
), pp.
2425
2432
.10.1016/j.biomaterials.2009.01.038
37.
Wenger
,
M. P. E.
,
Bozec
,
L.
,
Horton
,
M. A.
, and
Mesquida
,
P.
,
2007
, “
Mechanical Properties of Collagen Fibrils
,”
Biophys. J.
,
93
(
4
), pp.
1255
1263
.10.1529/biophysj.106.103192
38.
van Baardwijk
,
C.
, and
Roach
,
M. R.
,
1987
, “
Factors in the Propagation of Aortic Dissections in Canine Thoracic Aortas
,”
J. Biomech.
,
20
(
1
), pp.
67
73
.10.1016/0021-9290(87)90268-5
39.
Rhodin
,
J. A. G.
,
2011
, “
Architecture of the Vessel Wall
,”
Comprehensive Physiology
,
R.
Terjung
, ed.,
Wiley
,
New York
.
You do not currently have access to this content.