Currently, the diagnosis of coronary stenosis is primarily based on the well-established functional diagnostic parameter, fractional flow reserve (FFR: ratio of pressures distal and proximal to a stenosis). The threshold of FFR has a “gray” zone of 0.75–0.80, below which further clinical intervention is recommended. An alternate diagnostic parameter, pressure drop coefficient (CDP: ratio of trans-stenotic pressure drop to the proximal dynamic pressure), developed based on fundamental fluid dynamics principles, has been suggested by our group. Additional serial stenosis, present downstream in a single vessel, reduces the hyperemic flow, Q˜h, and pressure drop, Δp˜, across an upstream stenosis. Such hemodynamic variations may alter the values of FFR and CDP of the upstream stenosis. Thus, in the presence of serial stenoses, there is a need to evaluate the possibility of misinterpretation of FFR and test the efficacy of CDP of individual stenoses. In-vitro experiments simulating physiologic conditions, along with human data, were used to evaluate nine combinations of serial stenoses. Different cases of upstream stenosis (mild: 64% area stenosis (AS) or 40% diameter stenosis (DS); intermediate: 80% AS or 55% DS; and severe: 90% AS or 68% DS) were tested under varying degrees of downstream stenosis (mild, intermediate, and severe). The pressure drop-flow rate characteristics of the serial stenoses combinations were evaluated for determining the effect of the downstream stenosis on the upstream stenosis. In general, Q˜h and Δp˜ across the upstream stenosis decreased when the downstream stenosis severity was increased. The FFR of the upstream mild, intermediate, and severe stenosis increased by a maximum of 3%, 13%, and 19%, respectively, when the downstream stenosis severity increased from mild to severe. The FFR of a stand-alone intermediate stenosis under a clinical setting is reported to be ∼0.72. In the presence of a downstream stenosis, the FFR values of the upstream intermediate stenosis were either within (0.77 for 80%–64% AS and 0.79 for 80%–80% AS) or above (0.88 for 80%–90% AS) the “gray” zone (0.75–0.80). This artificial increase in the FFR value within or above the “gray” zone for an upstream intermediate stenosis when in series with a clinically relevant downstream stenosis could lead to misinterpretation of functional stenosis severity. In contrast, a distinct range of CDP values was observed for each case of upstream stenosis (mild: 8–10; intermediate: 47–54; and severe: 130–155). The nonoverlapping range of CDP could better delineate the effect of the downstream stenosis from the upstream stenosis and allow for the accurate diagnosis of the functional severity of the upstream stenosis.

References

References
1.
Feldman
,
R. L.
,
1978
, “
Hemodynamic Effects of Long and Multiple Coronary Arterial Narrowings
,”
Chest
,
74
(
3
), p.
280–285
.10.1378/chest.74.3.280
2.
Dorros
,
G.
,
Lewin
,
R. F.
, and
Janke
,
L.
,
1987
, “
Multiple Lesion Transluminal Coronary Angioplasty in Single and Multivessel Coronary Artery Disease: Acute Outcome and Long-Term Effect
,”
J. Am. Coll. Cardiol.
,
10
(
5
), pp.
1007
1013
.10.1016/S0735-1097(87)80338-8
3.
White
,
C. W.
,
Wright
,
C. B.
,
Doty
,
D. B.
,
Hiratza
,
L. F.
,
Eastham
,
C. L.
,
Harrison
,
D. G.
, and
Marcus
,
M. L.
,
1984
, “
Does Visual Interpretation of the Coronary Arteriogram Predict the Physiologic Importance of a Coronary Stenosis?
,”
N. Engl. J. Med.
,
310
(
13
), pp.
819
824
.10.1056/NEJM198403293101304
4.
Pijls
,
N. H.
,
van Son
,
J. A.
,
Kirkeeide
,
R. L.
,
De Bruyne
,
B.
, and
Gould
,
K. L.
,
1993
, “
Experimental Basis of Determining Maximum Coronary, Myocardial, and Collateral Blood Flow by Pressure Measurements for Assessing Functional Stenosis Severity Before and After Percutaneous Transluminal Coronary Angioplasty
,”
Circulation
,
87
(
4
), pp.
1354
1367
.10.1161/01.CIR.87.4.1354
5.
Kern
,
M. J.
,
Lerman
,
A.
,
Bech
,
J. W.
,
De Bruyne
,
B.
,
Eeckhout
,
E.
,
Fearon
,
W. F
,
.
Higano
,
S. T.
,
Lim
,
M. J.
,
Meuwissen
,
M.
,
Piek
,
J. J.
,
Pijls
,
N. H.
,
Siebes
,
M.
, and
Spaan
,
J. A.
,
2006
, “
Physiological Assessment of Coronary Artery Disease in the Cardiac Catheterization Laboratory: A Scientific Statement From the American Heart Association Committee on Diagnostic and Interventional Cardiac Catheterization, Council on Clinical Cardiology
,”
Circulation
,
114
(
12
), pp.
1321
1341
.10.1161/CIRCULATIONAHA.106.177276
6.
Spaan
,
J. A.
,
Piek
,
J. J.
,
Hoffman
,
J. I.
, and
Siebes
,
M.
,
2006
, “
Physiological Basis of Clinically Used Coronary Hemodynamic Indices
,”
Circulation
,
113
(
3
), pp.
446
455
.10.1161/CIRCULATIONAHA.105.587196
7.
Pijls
,
N. H.
,
Van Gelder
,
B.
,
Van der Voort
,
P.
,
Peels
,
K.
,
Bracke
,
F. A.
,
Bonnier
,
H. J.
, and
el Gamal
,
M. I.
,
1995
, “
Fractional Flow Reserve. A Useful Index to Evaluate the Influence of an epicardial Coronary Stenosis on Myocardial Blood Flow
,”
Circulation
,
92
(
11
), pp.
3183
3193
.10.1161/01.CIR.92.11.3183
8.
Pijls
,
N. H.
,
van Schaardenburgh
,
P.
,
Manoharan
,
G.
,
Boersma
,
E.
,
Bech
,
J. W.
,
van’t Veer
,
M.
,
Bar
,
F.
,
Hoorntje
,
J.
,
Koolen
,
J.
,
Wijns
,
W.
, and
de Bruyne
,
B.
,
2007
, “
Percutaneous Coronary Intervention of Functionally Nonsignificant Stenosis: 5-Year Follow-Up of the DEFER Study
,”
J. Am.Coll. Cardiol.
,
49
(
21
), pp.
2105
2111
.10.1016/j.jacc.2007.01.087
9.
Pijls
,
N. H.
,
Fearon
,
W. F.
,
Tonino
,
P. A.
,
Siebert
,
U.
,
Ikeno
,
F.
,
Bornschein
,
B.
,
van’t Veer
,
M.
,
Klauss
,
V.
,
Manoharan
,
G.
,
Engstrom
,
T.
,
Oldroyd
,
K. G.
,
Ver Lee
,
P. N.
,
MacCarthy
,
P. A.
, and
De Bruyne
,
B.
,
2010
, “
Fractional Flow Reserve Versus Angiography for Guiding Percutaneous Coronary Intervention in Patients With Multivessel Coronary Artery Disease: 2-Year Follow-Up of the FAME (Fractional Flow Reserve Versus Angiography for Multivessel Evaluation) Study
,”
J. Am. Coll. Cardiol.
,
56
(
3
), pp.
177
184
.10.1016/j.jacc.2010.04.012
10.
Steven
,
J. L.
,
Mark
,
A. M.
, and
Mark
,
A. G.
,
1997
, “
Fractional Flow Reserve
,” American College of Cardiology Current Journal Review,
6
(
1
), pp.
34
35
.
11.
Pijls
,
N. H. J.
,
2003
, “
Is it Time to Measure Fractional Flow Reserve in all Patients?
,”
J. Am. Col. Cardiol.
,
41
(
7
), pp.
1122
1124
.10.1016/S0735-1097(03)00056-1
12.
Silber
,
S.
,
Albertsson
,
P.
,
Aviles
,
F. F.
,
Camici
,
P. G.
,
Colombo
,
A.
,
Hamm
,
C.
,
Jorgensen
,
E.
,
Marco
,
J.
,
Nordrehaug
,
J. E.
,
Ruzyllo
,
W.
,
Urban
,
P.
,
Stone
,
G. W.
, and
Wijns
,
W.
,
2005
, “
Guidelines for Percutaneous Coronary Interventions. The Task Force for Percutaneous Coronary Interventions of the European Society of Cardiology
,”
Eur. Heart J.
,
26
(
8
), pp.
804
847
.10.1093/eurheartj/ehi564
13.
Fearon
,
W. F.
,
Tonino
,
P. A.
,
De Bruyne
,
B.
,
Siebert
,
U.
, and
Pijls
,
N. H.
,
2007
, “
Rationale and Design of the Fractional Flow Reserve Versus Angiography for Multivessel Evaluation (FAME) Study
,”
Am. Heart J.
,
154
(
4
), pp.
632
636
.10.1016/j.ahj.2007.06.012
14.
Gould
,
K. L.
,
Lipscomb
,
K.
, and
Hamilton
,
G. W.
,
1974
, “
Physiologic Basis for Assessing Critical Coronary Stenosis. Instantaneous Flow Response and Regional Distribution During Coronary Hyperemia as Measures of Coronary Flow Reserve
,”
Am. J. Cardiol.
,
33
(
1
), pp.
87
94
.10.1016/0002-9149(74)90743-7
15.
Bradley
,
A. J.
, and
Alpert
,
J. S.
,
1991
, “
Coronary Flow Reserve
,”
Am. Heart J.
,
122
(
4
), pp.
1116
1128
.10.1016/0002-8703(91)90480-6
16.
Hoffman
,
J. I.
,
1987
, “
A Critical View of Coronary Reserve
,”
Circulation
,
75
(
1
), pp.
I6
11
.
17.
Rossen
,
J. D.
, and
Winniford
,
M. D.
,
1993
, “
Effect of Increases in Heart Rate and Arterial Pressure on Coronary Flow Reserve in Humans
,”
J. Am. Coll. Cardiol.
,
21
(
2
), pp.
343
348
.10.1016/0735-1097(93)90673-O
18.
de Bruyne
,
B.
,
Bartunek
,
J.
,
Sys
,
S. U.
,
Pijls
,
N. H. J.
,
Heyndrickx
,
G. R.
, and
Wijns
,
W.
,
1996
, “
Simultaneous Coronary Pressure and Flow Velocity Measurements in Humans: Feasibility, Reproducibility, and Hemodynamic Dependence of Coronary Flow Velocity Reserve, Hyperemic Flow Versus Pressure Slope Index, and Fractional Flow Reserve
,”
Circulation
,
94
(
8
), pp.
1842
1849
.10.1161/01.CIR.94.8.1842
19.
Pijls
,
N. H.
,
Kern
,
M. J.
,
Yock
,
P. G.
, and
De Bruyne
,
B.
,
2000
, “
Practice and Potential Pitfalls of Coronary Pressure Measurement
,”
Cathet. Cardiovasc. Interv.
,
49
(
1
), pp.
1
16
.10.1002/(SICI)1522-726X(200001)49:1<1::AID-CCD1>3.0.CO;2-5
20.
Siebes
,
M.
,
Chamuleau
,
S. A.
,
Meuwissen
,
M.
,
Piek
,
J. J.
, and
Spaan
,
J. A.
,
2002
, “
Influence of Hemodynamic Conditions on Fractional Flow Reserve: Parametric Analysis of Underlying Model
,”
Am. J. Physiol. Heart Circ. Physiol.
,
283
(
4
), pp.
H1462
H1470
.
21.
Peelukhana
,
S. V.
,
Back
,
L. H.
, and
Banerjee
,
R. K.
,
2009
, “
Influence of Coronary Collateral Flow on Coronary Diagnostic Parameters: An in vitro Study
,”
J. Biomech.
,
42
(
16
), pp.
2753
2759
.10.1016/j.jbiomech.2009.08.013
22.
Banerjee
,
R. K.
,
Sinha Roy
,
A.
,
Back
,
L. H.
,
Back
,
M. R.
,
Khoury
,
S. F.
, and
Millard
,
R. W.
,
2007
, “
Characterizing Momentum Change and Viscous Loss of a Hemodynamic Endpoint in Assessment of Coronary Lesions
,”
J. Biomech.
,
40
(
3
), pp.
652
662
.10.1016/j.jbiomech.2006.01.014
23.
Banerjee
,
R. K.
,
Ashtekar
,
K. D.
,
Effat
,
M. A.
,
Helmy
,
T. A.
,
Kim
,
E.
,
Schneeberger
,
E. W.
,
Sinha
,
R. A.
,
Gottliebson
,
W. M.
, and
Back
,
L. H.
,
2009
, “
Concurrent Assessment of Epicardial Coronary Artery Stenosis and Microvascular Dysfunction Using Diagnostic Endpoints Derived From Fundamental Fluid Dynamics Principles
,”
J. Invasive Cardiol.
,
21
(
10
), pp.
511
517
.
24.
Kolli
,
K. K.
,
Banerjee
,
R. K.
,
Peelukhana
,
S. V.
,
Helmy
,
T. A.
,
Leesar
,
M. A.
,
Arif
,
I.
,
Schneeberger
,
E. W.
,
Hand
,
D.
,
Succop
,
P.
,
Gottliebson
,
W. M.
, and
Effat
,
M. A.
,
2011
, “
Influence of Heart Rate on Fractional Flow Reserve, Pressure Drop Coefficient, and Lesion Flow Coefficient for Epicardial Coronary Stenosis in a Porcine Model
,”
Am. J. Physiol. Heart Circ. Physiol.
,
300
(
1
), pp.
H382
H387
.10.1152/ajpheart.00412.2010
25.
Kolli
,
K. K.
,
Helmy
,
T. A.
,
Peelukhana
,
S. V.
,
Arif
,
I.
,
Leesar
,
M. A.
,
Back
,
L. H.
,
Banerjee
,
R. K.
, and
Effat
,
M. A.
,
2013
, “
Functional Diagnosis of Coronary Stenoses Using Pressure Drop Coefficient: A Pilot Study in Humans
,”
Cathet. Cardiovasc. Interv.
, to be published.
26.
Peelukhana
,
S. V.
,
Banerjee
,
R. K.
,
Kolli
,
K. K.
,
Effat
,
M. A.
,
Helmy
,
T. A.
,
Leesar
,
M. A.
,
Schneeberger
,
E. W.
,
Succop
,
P.
,
Gottliebson
,
W.
, and
Irif
,
A.
,
2012
, “
Effect of Heart Rate on Hemodynamic Endpoints Under Concomitant Microvascular Disease in a Porcine Model
,”
Am. J. Physiol. Heart Circ. Physiol.
,
302
(
8
), pp.
H1563
H1573
.10.1152/ajpheart.01042.2011
27.
Peelukhana
,
S. V.
,
Kolli
,
K. K.
,
Leesar
,
M. A.
,
Effat
,
M. A.
,
Helmy
,
T. A.
,
Arif
,
I.
,
Schneeberger
,
E. W.
,
Succop
,
P.
, and
Banerjee
,
R. K.
,
2013
, “
Effect of Myocardial Contractility on Hemodynamic End Points Under Concomitant Microvascular Disease in a Porcine Model
,”
Heart Vessels
, to be published.
28.
Kolli
,
K. K.
,
Banerjee
,
R. K.
,
Peelukhana
,
S. V.
,
Effat
,
M. A.
,
Leesar
,
M. A.
,
Arif
,
I.
,
Schneeberger
,
E. W.
,
Succop
,
P.
,
Gottliebson
,
W. M.
, and
Helmy
,
T. A.
,
2012
, “
Effect of Changes in Contractility on Pressure Drop Coefficient and Fractional Flow Reserve in a Porcine Model
,”
J. Invasive Cardiol.
,
24
(
1
), pp.
6
12
.
29.
De Bruyne
,
B.
,
Pijls
,
N. H. J.
,
Heyndrickx
,
G. R.
,
Hodeige
,
D.
,
Kirkeeide
,
R.
, and
Gould
,
K. L.
,
2000
, “
Pressure-Derived Fractional Flow Reserve to Assess Serial Epicardial Stenoses: Theoretical Basis and Animal Validation
,”
Circulation
,
101
(
15
), pp.
1840
1847
.10.1161/01.CIR.101.15.1840
30.
Kim
,
H. L.
,
Koo
,
B. K.
,
Nam
,
C. W.
,
Doh
,
J. H.
,
Kim
,
J. H.
,
Yang
,
H. M.
,
Park
,
K. W.
,
Lee
,
H. Y.
,
Kang
,
H. J.
,
Cho
,
Y. S.
,
Youn
,
T. J.
,
Kim
,
S. H.
,
Chae
,
I. H.
,
Choi
,
D. J.
,
Kim
,
H. S.
,
Oh
,
B. H.
, and
Park
,
Y. B.
,
2012
, “
Clinical and Physiological Outcomes of Fractional Flow Reserve-Guided Percutaneous Coronary Intervention in Patients With Serial Stenoses Within One Coronary Artery
,”
J. Am. Coll. Cardiol. Cardiovasc. Interv.
,
5
(
10
), pp.
1013
1018
.10.1016/j.jcin.2012.06.017
31.
Mintz
,
G. S.
,
Painter
,
J. A.
,
Pichard
,
A. D.
,
Kent
,
K. M.
,
Satler
,
L. F.
,
Popma
,
J. J.
,
Chuang
,
Y. C.
,
Bucher
,
T. A.
,
Sokolowicz
,
L. E.
, and
Leon
,
M. B.
,
1995
, “
Atherosclerosis in Angiographically” Normal “Coronary Artery Reference Segments: An Intravascular Ultrasound Study With Clinical Correlations
,”
J. Am. Coll. Cardiol.
,
25
(
7
), pp.
1479
1485
.10.1016/0735-1097(95)00088-L
32.
Park
,
S.-J.
,
Ahn
,
J.-M.
,
Pijls
,
N. H. J.
,
De Bruyne
,
B.
,
Shim
,
E. B.
,
Kim
,
Y.-T.
,
Kang
,
S.-J.
,
Song
,
H.
,
Lee
,
J.-Y.
,
Kim
,
W.-J.
,
Park
,
D.-W.
,
Lee
,
S.-W.
,
Kim
,
Y.-H.
,
Lee
,
C. W.
, and
Park
,
S.-W.
,
2012
, “
Validation of Functional State of Coronary Tandem Lesions Using Computational Flow Dynamics
,”
Am. J. Cardiol.
,
110
(
11
), pp.
1578
1584
.10.1016/j.amjcard.2012.07.023
33.
Pijls
,
N. H. J.
,
De Bruyne
,
B.
,
Bech
,
G. J. W.
,
Liistro
,
F.
,
Heyndrickx
,
G. R.
,
Bonnier
,
H. J. R. M.
, and
Koolen
,
J. J.
,
2000
, “
Coronary Pressure Measurement to Assess the Hemodynamic Significance of Serial Stenoses Within One Coronary Artery: Validation in Humans
,”
Circulation
,
102
(
19
), pp.
2371
2377
.10.1161/01.CIR.102.19.2371
34.
Tobis
,
J.
,
Azarbal
,
B.
, and
Slavin
,
L.
,
2007
, “
Assessment of Intermediate Severity Coronary Lesions in the Catheterization Laboratory
,”
J. Am. Coll. Cardiol.
,
49
(
8
), pp.
839
848
.10.1016/j.jacc.2006.10.055
35.
Gould
,
K. L.
, and
Lipscomb
,
K.
,
1974
, “
Effects of Coronary Stenoses on Coronary Flow Reserve and Resistance
,”
Am. J. Cardiol.
,
34
(
1
), pp.
48
55
.10.1016/0002-9149(74)90092-7
36.
Sabbah
,
H. N.
, and
Stein
,
P. D.
,
1982
, “
Hemodynamics of Multiple Versus Single 50 Percent Coronary Arterial Stenoses
,”
Am. J. Cardiol.
,
50
(
2
), pp.
276
280
.10.1016/0002-9149(82)90177-1
37.
Flanigan
,
D. P.
,
Tullis
,
J. P.
,
Streeter
,
V. L.
,
Whitehouse
,
W. M.
, Jr.
,
Fry
,
W. J.
, and
Stanley
,
J. C.
,
1977
, “
Multiple Subcritical Arterial Stenoses: Effect on Poststenotic Pressure and Flow
,”
Ann. Surg.
,
186
(
5
), pp.
663
668
.10.1097/00000658-197711000-00020
38.
Karayannacos
,
P. E.
,
Talukder
,
N.
,
Nerem
,
R. M.
,
Roshon
,
S.
, and
Vasko
,
J. S.
,
1977
, “
The Role of Multiple Noncritical Arterial Stenoses in the Pathogenesis of Ischemia
,”
J. Thorac. Cardiovasc. Surg.
,
73
(
3
), pp.
458
469
.
39.
Vonruden
,
W. J.
,
Blaisdell
,
F. W.
,
Hall
,
A. D.
, and
Thomas
,
A. N.
,
1964
, “
Multiple Arterial Stenoses: Effect on Blood Flow: An Experimental Study
,”
Arch. Surg.
,
89
, pp.
307
315
.10.1001/archsurg.1964.01320020071011
40.
Weale
,
F. E.
,
1964
, “
The Values of Series and Parallel Resistances in Steady Blood-Flow
,”
Br. J. Surg.
,
51
, pp.
623
627
.10.1002/bjs.1800510818
41.
Beckmann
,
C. F.
,
Levin
,
D. C.
,
Kubicka
,
R. A.
, and
Henschke
,
C. I.
,
1981
, “
The Effect of Sequential Arterial Stenoses on Flow and Pressure
,”
Radiology
,
140
(
3
), pp.
655
658
.
42.
Dodds
,
S. R.
, and
Phillips
,
P. S.
,
2003
, “
The Haemodynamics of Multiple Sequential Stenoses and the Criteria for a Critical Stenosis
,”
Eur. J. Vasc. Endovasc. Surg.
,
26
(
4
), pp.
348
353
.10.1016/S1078-5884(03)00252-1
43.
Wilson
,
R. F.
,
Johnson
,
M. R.
,
Marcus
,
M. L.
,
Aylward
,
P. E.
,
Skorton
,
D. J.
,
Collins
,
S.
, and
White
,
C. W.
,
1988
, “
The Effect of Coronary Angioplasty on Coronary Flow Reserve
,”
Circulation
,
77
(
4
), pp.
873
885
.10.1161/01.CIR.77.4.873
44.
Banerjee
,
R. K.
,
Back
,
L. H.
,
Back
,
M. R.
, and
Cho
,
Y. I.
,
2000
, “
Physiological Flow Simulation in Residual Human Stenoses After Coronary Angioplasty
,”
ASME J. Biomech. Eng.
,
122
(
4
), pp.
310
320
.10.1115/1.1287157
45.
Banerjee
,
R. K.
,
Back
,
L. H.
,
Back
,
M. R.
, and
Cho
,
Y. I.
,
2003
, “
Physiological Flow Analysis in Significant Human Coronary Artery Stenoses
,”
Biorheology
,
40
(
4
), pp.
451
476
.
46.
Roy
,
A. S.
,
Banerjee
,
R. K.
,
Back
,
L. H.
,
Back
,
M. R.
,
Khoury
,
S.
, and
Millard
,
R. W.
,
2005
, “
Delineating the Guide-Wire Flow Obstruction Effect in Assessment of Fractional Flow Reserve and Coronary Flow Reserve Measurements
,”
Am. J. Physiol. Heart Circ. Physiol.
,
289
(
1
), pp.
H392
H397
.10.1152/ajpheart.00798.2004
47.
Back
,
L. H.
, and
Denton
,
T.
,
1992
, “
Some Arterial Wall Shear Stress Estimates in Coronary Angioplasty
,”
Adv. Bioeng.
,
22
, pp.
337
340
.
48.
Ashtekar
,
K. D.
,
Back
,
L. H.
,
Khoury
,
S. F.
, and
Banerjee
,
R. K.
,
2007
, “
in vitro Quantification of Guidewire Flow-Obstruction Effect in Model Coronary Stenoses for Interventional Diagnostic Procedure
,”
ASME J. Med. Dev.
,
1
(
3
), p.
185–196
.10.1115/1.2776336
49.
Banerjee
,
R. K.
,
Ashtekar
,
K. D.
,
Helmy
,
T. A.
,
Effat
,
M. A.
,
Back
,
L. H.
, and
Khoury
,
S. F.
,
2008
, “
Hemodynamic Diagnostics of Epicardial Coronary Stenoses: In-Vitro Experimental and Computational Study
,”
Biomed. Eng. Online
,
7
(
24
), pp.
1–22
.10.1186/1475-925X-7-24
50.
Cho
,
Y. I.
, and
Kensey
,
K. R.
,
1991
, “
Effects of the Non-Newtonian Viscosity of Blood on Flows in a Diseased Arterial Vessel. Part 1: Steady Flows
,”
Biorheology
,
28
(
3–4
), pp.
241
262
.
51.
Goswami
,
I.
,
Peelukhana
,
S. V.
,
Al-Rjoub
,
M. F.
,
Back
,
L. H.
, and
Banerjee
,
R. K.
,
2013
, “
Influence of Variable Native Arterial Diameter and Vasculature Status on Coronary Diagnostic Parameters
,”
ASME J. Biomech. Eng.
,
135
(
9
), p.
091005
.10.1115/1.4024682
52.
Young
,
D. F.
, and
Tsai
,
F. Y.
,
1973
, “
Flow Characteristics in Models of Arterial Stenoses. I. Steady Flow
,”
J. Biomech.
,
6
(
4
), pp.
395
410
.10.1016/0021-9290(73)90099-7
53.
Young
,
D. F.
, and
Tsai
,
F. Y.
,
1973
, “
Flow Characteristics in Models of Arterial Stenoses. II. Unsteady Flow
,”
J. Biomech.
,
6
(
5
), pp.
547
559
.10.1016/0021-9290(73)90012-2
54.
Gould
,
K. L.
,
Kelley
,
K. O.
, and
Bolson
,
E. L.
,
1982
, “
Experimental Validation of Quantitative Coronary Arteriography for Determining Pressure-Flow Characteristics of Coronary Stenosis
,”
Circulation
,
66
(
5
), pp.
930
937
.10.1161/01.CIR.66.5.930
55.
Kilpatrick
,
D.
,
Webber
,
S. D.
, and
Colle
,
J. P.
,
1990
, “
The Vascular Resistance of Arterial Stenoses in Series
,”
Angiology
,
41
(
4
), pp.
278
285
.10.1177/000331979004100404
56.
Brown
,
B. G.
,
Bolson
,
E. L.
, and
Dodge
,
H. T.
,
1984
, “
Dynamic Mechanisms in Human Coronary Stenosis
,”
Circulation
,
70
(
6
), pp.
917
922
.10.1161/01.CIR.70.6.917
57.
Van Herck
,
P. L.
,
Carlier
,
S. G.
,
Claeys
,
M. J.
,
Haine
,
S. E.
,
Gorissen
,
P.
,
Miljoen
,
H.
,
Bosmans
,
J. M.
, and
Vrints
,
C. J.
,
2007
, “
Coronary Microvascular Dysfunction After Myocardial Infarction: Increased Coronary Zero Flow Pressure Both in the Infarcted and in the Remote Myocardium is Mainly Related to Left Ventricular Filling Pressure
,”
Heart
,
93
(
10
), pp.
1231
1237
.10.1136/hrt.2006.100818
58.
Bache
,
R. J.
, and
Schwartz
,
J. S.
,
1982
, “
Effect of Perfusion Pressure Distal to a Coronary Stenosis on Transmural Myocardial Blood Flow
,”
Circulation
,
65
(
5
), pp.
928
935
.10.1161/01.CIR.65.5.928
59.
Kirkeeide
,
R. L.
,
Gould
,
K. L.
, and
Parsel
,
L.
,
1986
, “
Assessment of Coronary Stenoses by Myocardial Perfusion Imaging During Pharmacologic Coronary Vasodilation. VII. Validation of Coronary Flow Reserve as a Single Integrated Functional Measure of Stenosis Severity Reflecting all its Geometric Dimensions
,”
J. Am. Coll. Cardiol.
,
7
(
1
), pp.
103
113
.10.1016/S0735-1097(86)80266-2
60.
Claeys
,
M. J.
,
Bosmans
,
J. M.
,
Hendrix
,
J.
, and
Vrints
,
C. J.
,
2001
, “
Reliability of Fractional Flow Reserve Measurements in Patients With Associated Microvascular Dysfunction: Importance of Flow on Translesional Pressure Gradient
,”
Cathet. Cardiovasc. Interv.
,
54
(
4
), pp.
427
434
.10.1002/ccd.2005
61.
Banerjee
,
R. K.
,
Back
,
L. H.
,
Back
,
M. R.
, and
Cho
,
Y. I.
,
1999
, “
Catheter Obstruction Effect on Pulsatile Flow Rate—Pressure Drop During Coronary Angioplasty
,”
ASME J. Biomech. Eng.
,
121
(
3
), pp.
281
289
.10.1115/1.2798321
62.
Banerjee
,
R. K.
,
Back
,
L. H.
, and
Back
,
M. R.
,
2003
, “
Effects of Diagnostic Guidewire Catheter Presence on Translesional Hemodynamic Measurements Across Significant Coronary Artery Stenoses
,”
Biorheology
,
40
(
6
), pp.
613
635
.
63.
Sinha Roy
,
A.
,
Back
,
L. H.
, and
Banerjee
,
R. K.
,
2006
, “
Guidewire Flow Obstruction Effect on Pressure Drop-Flow Relationship in Moderate Coronary Artery Stenosis
,”
J. Biomech.
,
39
(
5
), pp.
853
864
.10.1016/j.jbiomech.2005.01.020
64.
Drexler
,
H.
,
Zeiher
,
A. M.
,
Wollschlager
,
H.
,
Meinertz
,
T.
,
Just
,
H.
, and
Bonzel
,
T.
,
1989
, “
Flow-Dependent Coronary Artery Dilatation in Humans
,”
Circulation
,
80
(
3
), pp.
466
474
.10.1161/01.CIR.80.3.466
65.
Vita
,
J. A.
,
Treasure
,
C. B.
,
Ganz
,
P.
,
Cox
,
D. A.
,
Fish
,
R. D.
, and
Selwyn
,
A. P.
,
1989
, “
Control of Shear Stress in the Epicardial Coronary Arteries of Humans: Impairment by Atherosclerosis
,”
J. Am. Coll. Cardiol.
,
14
(
5
), pp.
1193
1199
.10.1016/0735-1097(89)90416-6
66.
Konala
,
B. C.
,
Das
,
A.
, and
Banerjee
,
R. K.
,
2011
, “
Influence of Arterial Wall-Stenosis Compliance on the Coronary Diagnostic Parameters
,”
J. Biomech.
,
44
(
5
), pp.
842
847
.10.1016/j.jbiomech.2010.12.011
67.
Mates
,
R. E.
,
Gupta
,
R. L.
,
Bell
,
A. C.
, and
Klocke
,
F. J.
,
1978
, “
Fluid Dynamics of Coronary Artery Stenosis
,”
Circ. Res.
,
42
(
1
), pp.
152
162
.10.1161/01.RES.42.1.152
68.
May
,
A. G.
,
De Weese
,
J. A.
, and
Rob
,
C. G.
,
1963
, “
Hemodynamic Effects of Arterial Stenosis
,”
Surgery
,
53
, pp.
513
524
.
You do not currently have access to this content.