Preservation of structural integrity inside cells and at cell-extracellular matrix (ECM) interfaces is a key challenge during freezing of biomaterials. Since the post-thaw functionality of cells depends on the extent of change in the cytoskeletal structure caused by complex cell-ECM adhesion, spatiotemporal deformation inside the cell was measured using a newly developed microbead-mediated particle tracking deformetry (PTD) technique using fibroblast-seeded dermal equivalents as a model tissue. Fibronectin-coated 500 nm diameter microbeads were internalized in cells, and the microbead-labeled cells were used to prepare engineered tissue with type I collagen matrices. After a 24 h incubation the engineered tissues were directionally frozen, and the cells were imaged during the process. The microbeads were tracked, and spatiotemporal deformation inside the cells was computed from the tracking data using the PTD method. Effects of particle size on the deformation measurement method were tested, and it was found that microbeads represent cell deformation to acceptable accuracy. The results showed complex spatiotemporal deformation patterns in the cells. Large deformation in the cells and detachments of cells from the ECM were observed. At the cellular scale, variable directionality of the deformation was found in contrast to the one-dimensional deformation pattern observed at the tissue scale, as found from earlier studies. In summary, this method can quantify the spatiotemporal deformation in cells and can be correlated to the freezing-induced change in the structure of cytosplasm and of the cell-ECM interface. As a broader application, this method may be used to compute deformation of cells in the ECM environment for physiological processes, namely cell migration, stem cell differentiation, vasculogenesis, and cancer metastasis, which have relevance to quantify mechanotransduction.

References

1.
Han
,
B.
, and
Bischof
,
J. C.
,
2004
, “
Engineering Challenges in Tissue Preservation
,”
In Vitro Cellular & Developmental Biology-Animal
,
2
(
2
), pp.
91
112
.
2.
Hewitt
,
R. E.
,
2011
, “
Biobanking: The Foundation of Personalized Medicine
,”
Current Opinion in Oncology
,
23
(
1
), pp.
112
119
.10.1097/CCO.0b013e32834161b8
3.
Badylak
,
S. F.
,
Taylor
,
D.
, and
Uygun
,
K.
,
2011
, “
Whole-Organ Tissue Engineering: Decellularization and Recellularization of Three-Dimensional Matrix Scaffolds
,”
Annu. Rev. Biomed. Eng.
,
13
, pp.
27
53
.10.1146/annurev-bioeng-071910-124743
4.
Macchiarini
,
P.
,
Jungebluth
,
P.
,
Go
,
T.
,
Asnaghi
,
M. A.
,
Rees
,
L. E.
,
Cogan
,
T. A.
,
Dodson
,
A.
,
Martorell
,
J.
,
Bellini
,
S.
,
Parnigotto
,
P. P.
,
Dickinson
,
S. C.
,
Hollander
,
A. P.
,
Mantero
,
S.
,
Conconi
,
M. T.
, and
Birchall
,
M. A.
,
2008
, “
Clinical Transplantation of a Tissue-Engineered Airway
,”
Lancet
,
372
(
9655
), pp.
2023
2030
.10.1016/S0140-6736(08)61598-6
5.
Gage
,
A. A.
, and
Baust
,
J. G.
,
2002
, “
Cryosurgery - a Review of Recent Advances and Current Issues
,”
Cryolett.
,
23
(
2
), pp.
69
78
.
6.
Mazur
,
P.
,
1984
, “
Freezing of Living Cells: Mechanisms and Implications
,”
Am. J. Physiol.
,
247
(
3
), Part 1, pp.
C125
C142
.
7.
Teo
,
K. Y.
,
DeHoyos
,
T. O.
,
Dutton
,
J. C.
,
Grinnell
,
F.
, and
Han
,
B.
,
2011
, “
Effects of Freezing-Induced Cell-Fluid–Matrix Interactions on the Cells and Extracellular Matrix of Engineered Tissues
,”
Biomaterials
,
32
(
23
), pp.
5380
5390
.10.1016/j.biomaterials.2011.04.008
8.
Gerson
,
C. J.
,
Goldstein
,
S.
, and
Heacox
,
A. E.
,
2009
, “
Retained Structural Integrity of Collagen and Elastin Within Cryopreserved Human Heart Valve Tissue as Detected by Two-Photon Laser Scanning Confocal Microscopy
,”
Cryobiology
,
59
(
2
), pp.
171
179
.10.1016/j.cryobiol.2009.06.012
9.
Gerson
,
C. J.
,
Elkins
,
R. C.
,
Goldstein
,
S.
, and
Heacox
,
A. E.
,
2012
, “
Structural Integrity of Collagen and Elastin in Synergraft (R) Decellularized-Cryopreserved Human Heart Valves
,”
Cryobiology
,
64
(
1
), pp.
33
42
.10.1016/j.cryobiol.2011.11.001
10.
Venkatasubramanian
,
R. T.
,
Wolkers
,
W. F.
,
Shenoi
,
M. M.
,
Barocas
, V
. H.
,
Lafontaine
,
D.
,
Soule
,
C. L.
,
Iaizzo
,
P. A.
, and
Bischof
,
J. C.
,
2010
, “
Freeze-Thaw Induced Biomechanical Changes in Arteries: Role of Collagen Matrix and Smooth Muscle Cells
,”
Ann. Biomed. Eng.
,
38
(
3
), pp.
694
706
.10.1007/s10439-010-9921-9
11.
Bischof
,
J. C.
,
Hunt
,
C. J.
,
Rubinsky
,
B.
,
Burgess
,
A.
, and
Pegg
,
D. E.
,
1990
, “
Effects of Cooling Rate and Glycerol Concentration on the Structure of the Frozen Kidney: Assessment by Cryoscanning Electron Microscopy
,”
Cryobiology
,
27
, pp.
301
310
.10.1016/0011-2240(90)90029-4
12.
Hong
,
J. S.
, and
Rubinsky
,
B.
,
1994
, “
Patterns of Ice Formation in Normal and Malignant Breast Tissue
,”
Cryobiology
,
31
(
2
), pp.
109
120
.10.1006/cryo.1994.1015
13.
Brockbank
,
K. G.
,
MacLellan
,
W. R.
,
Xie
,
J.
,
Hamm-Alvarez
,
S. F.
,
Chen
,
Z. Z.
, and
Schenke-Layland
,
K.
,
2008
, “
Quantitative Second Harmonic Generation Imaging of Cartilage Damage
,”
Cell and Tissue Banking
,
9
(
4
), pp.
299
307
.10.1007/s10561-008-9070-7
14.
Laouar
,
L.
,
Fishbein
,
K.
,
McGann
,
L. E.
,
Horton
,
W. E.
,
Spencer
,
R. G.
, and
Jomha
,
N. M.
,
2007
, “
Cryopreservation of Porcine Articular Cartilage: MRI and Biochemical Results After Different Freezing Protocols
,”
Cryobiology
,
54
(
1
), pp.
36
43
.10.1016/j.cryobiol.2006.10.193
15.
Oskam
,
I. C.
,
Lund
,
T.
, and
Santos
,
R. R.
,
2011
, “
Irreversible Damage in Ovine Ovarian Tissue after Cryopreservation in Propanediol: Analyses after In Vitro Culture and Xenotransplantation
,”
Reproduction in Domestic Animals
,
46
(
5
), pp.
793
799
.10.1111/j.1439-0531.2010.01743.x
16.
Changoor
,
A.
,
Fereydoonzad
,
L.
,
Yaroshinsky
,
A.
, and
Buschmann
,
M. D.
,
2010
, “
Effects of Refrigeration and Freezing on the Electromechanical and Biomechanical Properties of Articular Cartilage
,”
ASME J. Biomech. Eng.
,
132
(
6
), p.
064502
.10.1115/1.4000991
17.
Andrade
,
M. G. S.
,
Sa
,
C. N.
,
Marchionni
,
A. M. T.
,
de Bittencourt
,
T.
, and
Sadigursky
,
M.
,
2008
, “
Effects of Freezing on Bone Histological Morphology
,”
Cell and Tissue Banking
,
9
(
4
), pp.
279
287
.10.1007/s10561-008-9065-4
18.
Baicu
,
S.
,
Taylor
,
M. J.
,
Chen
,
Z.
, and
Rabin
,
Y.
,
2006
, “
Vitrification of Carotid Artery Segments: An Integrated Study of Thermophysical Events and Functional Recovery Toward Scale-Up for Clinical Applications
,”
Cell Preservation Technol.
,
4
(
4
), pp.
236
244
.10.1089/cpt.2006.9994
19.
Dainese
,
L.
,
Barili
,
F.
,
Topkara
,
T. K.
,
Cheema
,
F. H.
,
Formato
,
M.
,
Aljaber
,
E.
,
Fusari
,
M.
,
Micheli
,
B.
,
Guarino
,
A.
,
Biglioli
,
P.
, and
Polvani
,
G.
,
2006
, “
Effect of Cryopreservation Techniques on Aortic Valve Glycosaminoglycans
,”
Artificial Organs
,
30
(
4
), pp.
259
264
.10.1111/j.1525-1594.2006.00213.x
20.
Han
,
B.
,
Teo
,
K. Y.
,
Ghosh
,
S.
,
Dutton
,
J. C.
, and
Grinnell
,
F.
,
2013
, “
Thermomechanical Analysis of Freezing-Induced Cell-Fluid-Matrix Interactions in Engineered Tissues
,”
J. Mech. Behavior of Biomed. Mater.
,
18
, pp.
67
80
.10.1016/j.jmbbm.2012.10.014
21.
Han
,
B.
,
Miller
,
J. D.
, and
Jung
,
J. K.
,
2009
, “
Freezing-Induced Fluid-Matrix Interaction in Poroelastic Material
,”
ASME J. Biomech. Eng.
,
131
(
2
), p.
021002
.10.1115/1.3005170
22.
Korhonen
,
R. K.
,
Laasanen
,
M. S.
,
Toyras
,
J.
,
Lappalainen
,
R.
,
Helminen
,
H. J.
, and
Jurvelin
,
J. S.
,
2003
, “
Fibril Reinforced Poroelastic Model Predicts Specifically Mechanical Behavior of Normal, Proteoglycan Depleted and Collagen Degraded Articular Cartilage
,”
J. Biomech.
,
36
(
9
), pp.
1373
1379
.10.1016/S0021-9290(03)00069-1
23.
Teo
,
K. Y.
,
Dutton
,
J. C.
, and
Han
,
B.
,
2010
, “
Spatiotemporal Measurement of Freezing-Induced Deformation of Engineered Tissues
,”
ASME J. Biomech. Eng.
,
132
(
3
), p.
031003
.10.1115/1.4000875
24.
Seawright
,
A.
,
Ozcelikkale
,
A.
,
Dutton
,
J. C.
, and
Han
,
B.
,
2013
, “
Role of Cells in Freezing-Induced Cell-Fluid-Matrix Interactions Within Engineered Tissues
,”
ASME J. Biomech. Eng.
,
135
(
9
), p.
091001
.10.1115/1.4024571
25.
Dembo
,
M.
,
Oliver
,
T.
,
Ishihara
,
A.
, and
Jacobson
,
K.
,
1996
, “
Imaging the Traction Stresses Exerted by Locomoting Cells With the Elastic Substratum Method
,”
Biophys. J.
,
70
(
4
), pp.
2008
2022
.10.1016/S0006-3495(96)79767-9
26.
Legant
,
W. R.
,
Miller
,
J. S.
,
Blakely
,
B. L.
,
Cohen
,
D. M.
,
Genin
,
G. M.
, and
Chen
,
C. S.
,
2010
, “
Measurement of Mechanical Tractions Exerted by Cells in Three-Dimensional Matrices
,”
Nature Methods
,
7
(
12
), pp.
969
973
.10.1038/nmeth.1531
27.
Steigmann
,
D. J.
,
2002
, “
Invariants of the Stretch Tensors and Their Application to Finite Elasticity Theory
,”
Math. Mech. Solids
,
7
(
4
), pp.
393
404
.10.1177/108128028481
28.
Kearsley
,
E. A.
,
1989
, “
Strain Invariants Expressed as Average Stretches
,”
J. Rheol.
,
33
(
5
), pp.
757
760
.
29.
Pedersen
,
J. A.
, and
Swartz
,
M. A.
,
2005
, “
Mechanobiology in the Third Dimension
,”
Ann. Biomed. Eng.
,
33
(
11
), pp.
1469
1490
.10.1007/s10439-005-8159-4
30.
Schwarz
,
U. S.
, and
Bischofs
,
I. B.
,
2005
, “
Physical Determinants of Cell Organization in Soft Media
,”
Med. Eng. Phys.
,
27
(
9
), pp.
763
772
.10.1016/j.medengphy.2005.04.007
31.
Cowin
,
S. C.
,
2007
,
Tissue Mechanics
,
Springer
,
Berlin
.
32.
Grinnell
,
F.
, and
Geiger
,
B.
,
1986
, “
Interaction of Fibronection-Coated Beads With Attached and Spread Fibroblasts - Binding, Phagocytosis and Cytoskeletal Reorganization
,”
Exp. Cell Res.
,
162
(
2
), pp.
449
461
.10.1016/0014-4827(86)90349-6
33.
McAbee
,
D. D.
, and
Grinnell
,
F.
,
1983
, “
Fibronectin-Mediated Binding and Phagocytosis of Polysterene Latex Beads by Baby Hamster-Kidney Cells
,”
J. Cell Biol.
,
97
(
5
), pp.
1515
1523
.10.1083/jcb.97.5.1515
34.
Grinnell
,
F.
,
1980
, “
Fibroblast Receptor for Cell-Substratum Adhesion - Studies on the Interaction of Baby Hamster-Kidney Cells With Latex Beads Coated by Cold Insoluble Globulin (Plasma Fibronectin)
,”
J. Cell Biol.
,
86
(
1
), pp.
104
112
.10.1083/jcb.86.1.104
35.
Wagner
,
D. D.
, and
Hynes
,
R. O.
,
1982
, “
Fibronectin-Coated Beads are Endocytosed by Cells and Align With Microfilament Bundles
,”
Exp. Cell Res.
,
140
(
2
), pp.
373
381
.10.1016/0014-4827(82)90126-4
36.
Sun
,
J. Y.
,
Zhao
,
X. H.
,
Illeperuma
,
W. R. K.
,
Chaudhuri
,
O.
,
Oh
,
K. H.
,
Mooney
,
D. J.
,
Vlassak
,
J. J.
, and
Suo
,
Z. G.
,
2012
, “
Highly Stretchable and Tough Hydrogels
,”
Nature
,
489
(
7414
), pp.
133
136
.10.1038/nature11409
37.
Hong
,
W.
,
Zhao
,
X. H.
,
Zhou
,
J. X.
, and
Suo
,
Z. G.
,
2008
, “
A Theory of Coupled Diffusion and Large Deformation in Polymeric Gels
,”
J. Mech. Phys. Solids
,
56
(
5
), pp.
1779
1793
.10.1016/j.jmps.2007.11.010
38.
McAbee
,
D. D.
, and
Grinnell
,
F.
,
1985
, “
Binding and Phagocytosis of Fibronectin-Coated Beads by Bhk Cells-Receptor Specificity and Dynamics
,”
J. Cell. Physiol.
,
124
(
2
), pp.
240
246
.10.1002/jcp.1041240211
39.
Charras
,
G. T.
,
Mitchison
,
T. J.
, and
Mahadevan
,
L.
,
2009
, “
Animal Cell Hydraulics
,”
J. Cell Sci.
,
122
(
18
), pp.
3233
3241
.10.1242/jcs.049262
40.
Kwon
,
R. Y.
, and
Jacobs
,
C. R.
,
2007
, “
Time-Dependent Deformations in Bone Cells Exposed to Fluid Flow in vitro: Investigating the Role of Cellular Deformation in Fluid Flow-Induced Signaling
,”
J. Biomech.
,
40
(
14
), pp.
3162
3168
.10.1016/j.jbiomech.2007.04.003
41.
Vogel
,
V.
, and
Sheetz
,
M.
,
2006
, “
Local Force and Geometry Sensing Regulate Cell Functions
,”
Nature Reviews Molecular Cell Biology
,
7
(
4
), pp.
265
275
.10.1038/nrm1890
42.
Suresh
,
S.
,
2007
, “
Biomechanics and Biophysics of Cancer Cells
,”
Acta Biomater.
,
3
(
4
), pp.
413
438
.10.1016/j.actbio.2007.04.002
43.
Wirtz
,
D.
,
2009
, “
Particle-Tracking Microrheology of Living Cells: Principles and Applications
,”
Annu. Rev. Biophys.
, pp.
301
326
.10.1146/annurev.biophys.050708.133724
44.
Dembo
,
M.
, and
Wang
,
Y. L.
,
1999
, “
Stresses at the Cell-to-Substrate Interface During Locomotion of Fibroblasts
,”
Biophys. J.
,
76
(
4
), pp.
2307
2316
.10.1016/S0006-3495(99)77386-8
You do not currently have access to this content.