The present study, through finite element simulations, shows the geometric effects of a bioinspired solid on pressure and impulse mitigation for an elastic, plastic, and viscoelastic material. Because of the bioinspired geometries, stress wave mitigation became apparent in a nonintuitive manner such that potential real-world applications in human protective gear designs are realizable. In nature, there are several toroidal designs that are employed for mitigating stress waves; examples include the hyoid bone on the back of a woodpecker's jaw that extends around the skull to its nose and a ram's horn. This study evaluates four different geometries with the same length and same initial cross-sectional diameter at the impact location in three-dimensional finite element analyses. The geometries in increasing complexity were the following: (1) a round cylinder, (2) a round cylinder that was tapered to a point, (3) a round cylinder that was spiraled in a two dimensional plane, and (4) a round cylinder that was tapered and spiraled in a two-dimensional plane. The results show that the tapered spiral geometry mitigated the greatest amount of pressure and impulse (approximately 98% mitigation) when compared to the cylinder regardless of material type (elastic, plastic, and viscoelastic) and regardless of input pressure signature. The specimen taper effectively mitigated the stress wave as a result of uniaxial deformational processes and an induced shear that arose from its geometry. Due to the decreasing cross-sectional area arising from the taper, the local uniaxial and shear stresses increased along the specimen length. The spiral induced even greater shear stresses that help mitigate the stress wave and also induced transverse displacements at the tip such that minimal wave reflections occurred. This phenomenon arose although only longitudinal waves were introduced as the initial boundary condition (BC). In nature, when shearing occurs within or between materials (friction), dissipation usually results helping the mitigation of the stress wave and is illustrated in this study with the taper and spiral geometries. The combined taper and spiral optimized stress wave mitigation in terms of the pressure and impulse; thus providing insight into the ram's horn design and woodpecker hyoid designs found in nature.

References

1.
Zukas
,
J. A.
,
Nicholas
,
T.
,
Swift
,
H. F.
,
Greszczuk
,
L. B.
, and
Curran
,
D. R.
,
1992
,
Impact Dynamics
,
Krieger Publishing Co.
,
Malabar, FL
.
2.
Zukas
,
J. A.
, and
Walters
,
W. P.
,
1998
,
Explosive Effects and Applications
,
Springer-Verlag, Inc.
,
New York
.
3.
Meyers
,
M. A.
,
1994
,
Dynamic Behavior of Materials
,
John Wiley & Sons, Inc.
,
New York
.
4.
Davis
,
J. L.
,
1988
,
Wave Propagation in Solids and Fluids
,
Springer-Verlag, Inc.
,
New York
.
5.
Achenbach
,
J. D.
,
1993
,
Wave Propagation in Elastic Solids
,
North-Holland
,
Amsterdam, Netherlands
.
6.
Hayashi
,
T.
,
Song
,
W. J.
, and
Rose
,
J. L.
,
2003
, “
Guided Wave Dispersion Curves for a Bar With an Arbitrary Cross-Section, a Rod and Rail Example
,”
Ultrasonics
,
41
(
3
), pp.
175
183
.10.1016/S0041-624X(03)00097-0
7.
Demma
,
A.
,
Cawley
,
P.
,
Lowe
,
M.
, and
Pavlakovic
,
B.
,
2005
, “
The Effect of Bends on the Propagation of Guided Waves in Pipes
,”
ASME J. Press. Vessel Tech.
,
127
(
3
), pp.
328
335
.10.1115/1.1990211
8.
Gavric
,
L.
,
1995
, “
Computation of Propagative Waves in Free Rail Using a Finite Element Technique
,”
J. Sound Vib.
,
185
(
3
), pp.
531
543
.10.1006/jsvi.1995.0398
9.
Treyssède
,
F.
,
2008
, “
Elastic Waves in Helical Waveguides
,”
Wave Motion
,
45
(
4
), pp.
457
470
.10.1016/j.wavemoti.2007.09.004
10.
Mace
,
B. R.
,
Duhamel
,
D.
,
Brennan
,
M. J.
, and
Hinke
,
L.
,
2005
, “
Finite Element Prediction of Wave Motion in Structural Waveguides
,”
J. Acoust. Soc. Am.
,
117
(
5
), pp.
2835
2843
.10.1121/1.1887126
11.
Setchell
,
R. E.
,
Storm
,
E.
, and
Sturtevant
,
B.
,
1972
, “
Investigation of Shock Strengthening in a Conical Convergent Channel
,”
J. Fluid Mech.
,
56
(
3
), pp.
505
522
.10.1017/S0022112072002484
12.
Lind
,
C. A.
,
1997
, “
Effect of Geometry on the Unsteady Type-IV Shock Interaction
,”
J. Aircraft
,
34
(
1
), pp.
64
71
.10.2514/2.2136
13.
Bond
,
C.
,
Hill
,
D. J.
,
Meiron
,
D. I.
, and
Dimotakis
,
P. E.
,
2009
, “
Shock Focusing in a Planar Convergent Geometry: Experiment and Simulation
,”
J. Fluid Mech.
,
641
, pp.
297
333
.10.1017/S0022112009991492
14.
Inoue
,
O.
,
Takahashi
,
N.
, and
Takayama
,
K.
,
1993
, “
Shock Wave Focusing in a Log-Spiral Duct
,”
AIAA J.
,
31
(
6
), pp.
1150
1152
.10.2514/3.11740
15.
ABAQUS
,
2011
,
v6.11 User Documentation
,
Dassault Systemes Simulia Corp.
,
Providence, RI
.
16.
Horstemeyer
,
M. F.
, Carino, R. L., Hammi, Y., Solanki, K. N., “
MSU Internal State Variable Plasticity-Damage Model 1.0 Calibration, DMGfit Production Version Users Manual
,” MSU.CAVS.CMD.2009-R0010. Mississipi State University: CAVS,
2009
.
17.
McKittrick
,
J.
,
Chen
,
P. Y.
,
Tombolato
,
L.
,
Novitskaya
,
E. E.
,
Trim
,
M. W.
,
Hirata
,
G. A.
,
Olevsky
,
E. A.
,
Horstemeyer
,
M. F.
and
Meyers
,
M. A.
,
2010
, “
Energy Absorbent Natural Materials and Bioinspired Design Strategies: A Review
,”
Mat. Sci. Eng. C
,
30
(
3
), pp.
331
342
.10.1016/j.msec.2010.01.011
18.
Mohammed
,
J. S.
, and
Murphy
,
W. L.
,
2009
, “
Bioinspired Design of Dynamic Materials
,”
Adv. Mat.
,
21
(
23
), pp.
2361
2374
.10.1002/adma.200803785
19.
Munch
,
E.
,
Launey
,
M. E.
,
Alsem
,
D. H.
,
Saiz
,
E.
,
Tomsia
,
A. P.
, and
Ritchie
,
R. O.
,
2008
Tough, Bio-Inspired Hybrid Materials
,”
Science
,
322
(
5907
), pp.
1516
1520
.10.1126/science.1164865
20.
Sang-Hee
,
Y.
, and
Sungmin
,
P.
,
2011
, “
A Mechanical Analysis of Woodpecker Drumming and Its Application to Shock-Absorbing systems
,”
Bioinspir. Biomimet.
,
6
(
1
).
21.
May
,
P. R. A.
,
Fuster
,
J. M.
,
Haber
,
J.
, and
Hirschman
,
A.
,
1979
, “
Woodpecker Drilling Behavior. An Endorsement of the Rotational Theory of Impact Brain Injury
,”
Arch. Neurol.
,
36
(
6
), pp.
370
373
.10.1001/archneur.1979.00500420080011
22.
Backhouse
,
F.
,
2005
,
Woodpeckers of North America
,
Firefly Books
,
New York
.
23.
Oda
,
J.
,
Sakamoto
,
J.
, and
Sakano
,
K.
,
2006
, “
Mechanical Evaluation of the Skeletal Structure and Tissue of the Woodpecker and Its Shock Absorbing System
,”
JSME Int. J. A
, Solid Mech. Mat. Eng.,
49
(
3
), pp.
390
396
.10.1299/jsmea.49.390
24.
Geist
,
V.
,
Mountain Sheep
,
1971
,
University of Chicago
,
Chicago, IL
.
25.
Hogg
,
J.
,
1984
, “
Mating in Bighorn Sheep: Multiple creative Male Strategies
,”
Science
225
(
4661
), pp.
526
529
.10.1126/science.6539948
26.
Kitchener
,
A.
,
1988
, “
An Analysis of the Forces of Fighting of the Blackbuck (Antilope cervicapra) and the Bighorn sheep (Ovis canadensis) and the Mechanical Design of the Horns of Bovids
,”
J. Zoology
,
214
(
1
), pp.
1
20
.10.1111/j.1469-7998.1988.tb04983.x
27.
Beranek
,
L. L.
, and
Sleeper
,
H. P.
,
1946
The Design and Construction of Anechoic Sound Chambers
,”
J. Acoust. Soc. Am.
,
18
(
1
), pp.
140
150
.10.1121/1.1916351
You do not currently have access to this content.