Cartilage fissures, surface fibrillation, and delamination represent early signs of hip osteoarthritis (OA). This damage may be caused by elevated first principal (most tensile) strain and maximum shear stress. The objectives of this study were to use a population of validated finite element (FE) models of normal human hips to evaluate the required mesh for converged predictions of cartilage tensile strain and shear stress, to assess the sensitivity to cartilage constitutive assumptions, and to determine the patterns of transchondral stress and strain that occur during activities of daily living. Five specimen-specific FE models were evaluated using three constitutive models for articular cartilage: quasilinear neo-Hookean, nonlinear Veronda Westmann, and tension-compression nonlinear ellipsoidal fiber distribution (EFD). Transchondral predictions of maximum shear stress and first principal strain were determined. Mesh convergence analysis demonstrated that five trilinear elements were adequate through the depth of the cartilage for precise predictions. The EFD model had the stiffest response with increasing strains, predicting the largest peak stresses and smallest peak strains. Conversely, the neo-Hookean model predicted the smallest peak stresses and largest peak strains. Models with neo-Hookean cartilage predicted smaller transchondral gradients of maximum shear stress than those with Veronda Westmann and EFD models. For FE models with EFD cartilage, the anterolateral region of the acetabulum had larger peak maximum shear stress and first principal strain than all other anatomical regions, consistent with observations of cartilage damage in disease. Results demonstrate that tension-compression nonlinearity of a continuous fiber distribution exhibiting strain induced anisotropy incorporates important features that have large effects on predictions of transchondral stress and strain. This population of normal hips provides baseline data for future comparisons to pathomorphologic hips. This approach can be used to evaluate these and other mechanical variables in the human hip and their potential role in the pathogenesis of osteoarthritis (OA).

References

References
1.
Carter
,
D. R.
,
Beaupré
,
G. S.
,
Wong
,
M.
,
Smith
,
R. L.
,
Andriacchi
,
T. P.
, and
Schurman
,
D. J.
,
2004
, “
The Mechanobiology of Articular Cartilage Development and Degeneration
,”
Clin. Orthopaed. Related Res.
,
427
(
Suppl.
), pp.
S69
S77
.10.1097/01.blo.0000144970.05107.7e
2.
Guilak
,
F.
,
Fermor
,
B.
,
Keefe
,
F. J.
,
Kraus
,
V. B.
,
Olson
,
S. A.
,
Pisetsky
,
D. S.
,
Setton
,
L. A.
, and
Weinberg
,
J. B.
,
2004
, “
The Role of Biomechanics and Inflammation in Cartilage Injury and Repair
,”
Clin. Orthopaed. Related Res.
,
423
, pp.
17
26
.10.1097/01.blo.0000131233.83640.91
3.
Atkinson
,
T. S.
,
Haut
,
R. C.
, and
Altiero
,
N. J.
,
1998
, “
Impact-Induced Fissuring of Articular Cartilage: An Investigation of Failure Criteria
,”
ASME J. Biomech. Eng.
,
120
(
2
), pp.
181
187
.10.1115/1.2798300
4.
Haut
,
R. C.
,
Ide
,
T. M.
, and
De Camp
,
C. E.
,
1995
, “
Mechanical Responses of the Rabbit Patello-Femoral Joint to Blunt Impact
,”
ASME J. Biomech. Eng.
,
117
(
4
), pp.
402
408
.10.1115/1.2794199
5.
Bader
,
D. L.
,
Salter
,
D. M.
, and
Chowdhury
,
T. T.
,
2011
, “
Biomechanical Influence of Cartilage Homeostasis in Health and Disease
,”
Arthritis
,
2011
, p.
979032
.10.1155/2011/979032
6.
Grodzinsky
,
A. J.
,
Levenston
,
M. E.
,
Jin
,
M.
, and
Frank
,
E. H.
,
2000
, “
Cartilage Tissue Remodeling in Response to Mechanical Forces
,”
Ann. Rev. Biomed. Eng.
,
2
, pp.
691
713
.10.1146/annurev.bioeng.2.1.691
7.
Guilak
,
F.
,
2011
, “
Biomechanical Factors in Osteoarthritis
,”
Best Pract. Res. Clin. Rheum.
,
25
(
6
), pp.
815
823
.10.1016/j.berh.2011.11.013
8.
Atkinson
,
P. J.
, and
Haut
,
R. C.
,
2001
, “
Impact Responses of the Flexed Human Knee Using a Deformable Impact Interface
,”
ASME J. Biomech. Eng.
,
123
(
3
), pp.
205
211
.10.1115/1.1372320
9.
Wilson
,
W.
,
Van Burken
,
C.
,
Van Donkelaar
,
C.
,
Buma
,
P.
,
Van Rietbergen
,
B.
, and
Huiskes
,
R.
,
2006
, “
Causes of Mechanically Induced Collagen Damage in Articular Cartilage
,”
J. Orthopaed. Res.
,
24
(
2
), pp.
220
228
.10.1002/jor.20027
10.
Maniwa
,
S.
,
Nishikori
,
T.
,
Furukawa
,
S.
,
Kajitani
,
K.
, and
Ochi
,
M.
,
2001
, “
Alteration of Collagen Network and Negative Charge of Articular Cartilage Surface in the Early Stage of Experimental Osteoarthritis
,”
Arch. Orthopaed. Trauma Surg.
,
121
(
4
), pp.
181
185
.10.1007/s004020000203
11.
Arokoski
,
J. P.
,
Jurvelin
,
J. S.
,
Vaatainen
,
U.
, and
Helminen
,
H. J.
,
2000
, “
Normal and Pathological Adaptations of Articular Cartilage to Joint Loading
,”
Scan. J. Med. Sci. Sports
,
10
(
4
), pp.
186
198
.10.1034/j.1600-0838.2000.010004186.x
12.
Radin
,
E. L.
,
Martin
,
R. B.
,
Burr
,
D. B.
,
Caterson
,
B.
,
Boyd
,
R. D.
, and
Goodwin
,
C.
,
1984
, “
Effects of Mechanical Loading on the Tissues of the Rabbit Knee
,”
J. Orthopaed. Res.
,
2
(
3
), pp.
221
234
.10.1002/jor.1100020303
13.
Thompson
,
R. C.
Jr.
,
Oegema
,
T. R.
Jr.
,
Lewis
,
J. L.
, and
Wallace
,
L.
,
1991
, “
Osteoarthrotic Changes After Acute Transarticular Load. An Animal Model
,”
J. Bone Joint Surg. Am. Vol.
,
73
(
7
), pp.
990
1001
.
14.
Anderson
,
L. A.
,
Peters
,
C. L.
,
Park
,
B. B.
,
Stoddard
,
G. J.
,
Erickson
,
J. A.
, and
Crim
,
J. R.
,
2009
, “
Acetabular Cartilage Delamination in Femoroacetabular Impingement. Risk Factors and Magnetic Resonance Imaging Diagnosis
,”
J. Bone Joint Surg. Am. Vol.
,
91
(
2
), pp.
305
313
.10.2106/JBJS.G.01198
15.
Ateshian
,
G. A.
,
Lai
,
W. M.
,
Zhu
,
W. B.
, and
Mow
,
V. C.
,
1994
, “
An Asymptotic Solution for the Contact of Two Biphasic Cartilage Layers
,”
J. Biomech.
,
27
(
11
), pp.
1347
1360
.10.1016/0021-9290(94)90044-2
16.
Ateshian
,
G. A.
, and
Wang
,
H.
,
1995
, “
A Theoretical Solution for the Frictionless Rolling Contact of Cylindrical Biphasic Articular Cartilage Layers
,”
J. Biomech.
,
28
(
11
), pp.
1341
1355
.10.1016/0021-9290(95)00008-6
17.
Beck
,
M.
,
Kalhor
,
M.
,
Leunig
,
M.
, and
Ganz
,
R.
,
2005
, “
Hip Morphology Influences the Pattern of Damage to the Acetabular Cartilage: Femoroacetabular Impingement as a Cause of Early Osteoarthritis of the Hip
,”
J. Bone Joint Surg. Brit. Vol.
,
87
(
7
), pp.
1012
1018
.10.1302/0301-620X.87B7.15203
18.
Askew
,
M.
, and
Mow
,
V.
,
1978
, “
The Biomechanical Function of the Collagen Fibril Ultrastructure of Articular Cartilage
,”
ASME J. Biomech. Eng.
,
100
(3), p.
105
–115.10.1115/1.3426200
19.
Broom
,
N. D.
,
Oloyede
,
A.
,
Flachsmann
,
R.
, and
Hows
,
M.
,
1996
, “
Dynamic Fracture Characteristics of the Osteochondral Junction Undergoing Shear Deformation
,”
Med. Eng. Phys.
,
18
(
5
), pp.
396
404
.10.1016/1350-4533(95)00067-4
20.
Flachsmann
,
E. R.
,
Broom
,
N. D.
, and
Oloyede
,
A.
,
1995
, “
A Biomechanical Investigation of Unconstrained Shear Failure of the Osteochondral Region under Impact Loading
,”
Clin. Biomech.
,
10
(
3
), pp.
156
165
.10.1016/0268-0033(95)93706-Y
21.
Flachsmann
,
R.
,
Broom
,
N. D.
,
Hardy
,
A. E.
, and
Moltschaniwskyj
,
G.
,
2000
, “
Why Is the Adolescent Joint Particularly Susceptible to Osteochondral Shear Fracture?
,”
Clin. Orthopaed. Related Res.
,
381
, pp.
212
221
.10.1097/00003086-200012000-00025
22.
Silyn-Roberts
,
H.
, and
Broom
,
N. D.
,
1990
, “
Fracture Behaviour of Cartilage-on-Bone in Response to Repeated Impact Loading
,”
Connective Tissue Res.
,
24
(
2
), pp.
143
156
.10.3109/03008209009152430
23.
Meachim
,
G.
, and
Bentley
,
G.
,
1978
, “
Horizontal Splitting in Patellar Articular Cartilage
,”
Arthritis Rheum.
,
21
(
6
), pp.
669
674
.10.1002/art.1780210610
24.
Gosvig
,
K. K.
,
Jacobsen
,
S.
,
Sonne-Holm
,
S.
,
Palm
,
H.
, and
Troelsen
,
A.
,
2010
, “
Prevalence of Malformations of the Hip Joint and Their Relationship to Sex, Groin Pain, and Risk of Osteoarthritis: A Population-Based Survey
,”
J. Bone Joint Surg. Am. Vol.
,
92
(
5
), pp.
1162
1169
.10.2106/JBJS.H.01674
25.
Anderson
,
A. E.
,
Ellis
,
B. J.
,
Maas
,
S. A.
,
Peters
,
C. L.
, and
Weiss
,
J. A.
,
2008
, “
Validation of Finite Element Predictions of Cartilage Contact Pressure in the Human Hip Joint
,”
ASME J. Biomech. Eng.
,
130
(
5
), p.
051008
.10.1115/1.2953472
26.
Anderson
,
A. E.
,
Ellis
,
B. J.
,
Maas
,
S. A.
, and
Weiss
,
J. A.
,
2010
, “
Effects of Idealized Joint Geometry on Finite Element Predictions of Cartilage Contact Stresses in the Hip
,”
J. Biomech.
,
43
(
7
), pp.
1351
1357
.10.1016/j.jbiomech.2010.01.010
27.
Brown
,
T. D.
, and
Digioia
,
A. M.
, 3rd
,
1984
, “
A Contact-Coupled Finite Element Analysis of the Natural Adult Hip
,”
J. Biomech.
,
17
(
6
), pp.
437
448
.10.1016/0021-9290(84)90035-6
28.
Chegini
,
S.
,
Beck
,
M.
, and
Ferguson
,
S. J.
,
2009
, “
The Effects of Impingement and Dysplasia on Stress Distributions in the Hip Joint During Sitting and Walking: A Finite Element Analysis
,”
J. Orthopaed. Res.
,
27
(
2
), pp.
195
201
.10.1002/jor.20747
29.
Harris
,
M. D.
,
Anderson
,
A. E.
,
Henak
,
C. R.
,
Ellis
,
B. J.
,
Peters
,
C. L.
, and
Weiss
,
J. A.
,
2012
, “
Finite Element Prediction of Cartilage Contact Stresses in Normal Human Hips
,”
J. Orthopaed. Res.
,
30
(
7
), pp.
1133
1139
.10.1002/jor.22040
30.
Henak
,
C. R.
,
Ellis
,
B. J.
,
Harris
,
M. D.
,
Anderson
,
A. E.
,
Peters
,
C. L.
, and
Weiss
,
J. A.
,
2011
, “
Role of the Acetabular Labrum in Load Support across the Hip Joint
,”
J. Biomech.
,
44
(
12
), pp.
2201
2206
.10.1016/j.jbiomech.2011.06.011
31.
Rapperport
,
D. J.
,
Carter
,
D. R.
, and
Schurman
,
D. J.
,
1985
, “
Contact Finite Element Stress Analysis of the Hip Joint
,”
J. Orthopaed. Res.
,
3
(
4
), pp.
435
446
.10.1002/jor.1100030406
32.
Russell
,
M. E.
,
Shivanna
,
K. H.
,
Grosland
,
N. M.
, and
Pedersen
,
D. R.
,
2006
, “
Cartilage Contact Pressure Elevations in Dysplastic Hips: A Chronic Overload Model
,”
J. Orthopaed. Surg. Res.
,
1
(6).10.1186/1749-799X-1-6
33.
Wei
,
H. W.
,
Sun
,
S. S.
,
Jao
,
S. H.
,
Yeh
,
C. R.
, and
Cheng
,
C. K.
,
2005
, “
The Influence of Mechanical Properties of Subchondral Plate, Femoral Head and Neck on Dynamic Stress Distribution of the Articular Cartilage
,”
Med. Eng. Phys.
,
27
(
4
), pp.
295
304
.10.1016/j.medengphy.2004.12.008
34.
Henak
,
C. R.
,
Kapron
,
A. L.
,
Anderson
,
A. E.
,
Ellis
,
B. J.
,
Maas
,
S. A.
, and
Weiss
,
J. A.
,
2013
, “
Specimen-Specific Predictions of Contact Stress Under Physiological Loading in the Human Hip: Validation and Sensitivity Studies
,”
Biomech. Model Mechanobiol
.10.1007/s10237-013-0504-1
35.
Buckley
,
M. R.
,
Gleghorn
,
J. P.
,
Bonassar
,
L. J.
, and
Cohen
,
I.
,
2008
, “
Mapping the Depth Dependence of Shear Properties in Articular Cartilage
,”
J. Biomech.
,
41
(
11
), pp.
2430
2437
.10.1016/j.jbiomech.2008.05.021
36.
Chen
,
A. C.
,
Bae
,
W. C.
,
Schinagl
,
R. M.
, and
Sah
,
R. L.
,
2001
, “
Depth- and Strain-Dependent Mechanical and Electromechanical Properties of Full-Thickness Bovine Articular Cartilage in Confined Compression
,”
J. Biomech.
,
34
(
1
), pp.
1
12
.10.1016/S0021-9290(00)00170-6
37.
Huang
,
C. Y.
,
Soltz
,
M. A.
,
Kopacz
,
M.
,
Mow
,
V. C.
, and
Ateshian
,
G. A.
,
2003
, “
Experimental Verification of the Roles of Intrinsic Matrix Viscoelasticity and Tension-Compression Nonlinearity in the Biphasic Response of Cartilage
,”
ASME J. Biomech. Eng.
,
125
(
1
), pp.
84
93
.10.1115/1.1531656
38.
Huang
,
C. Y.
,
Stankiewicz
,
A.
,
Ateshian
,
G. A.
, and
Mow
,
V. C.
,
2005
, “
Anisotropy, Inhomogeneity, and Tension-Compression Nonlinearity of Human Glenohumeral Cartilage in Finite Deformation
,”
J. Biomech.
,
38
(
4
), pp.
799
809
.10.1016/j.jbiomech.2004.05.006
39.
Mak
,
A. F.
,
1986
, “
The Apparent Viscoelastic Behavior of Articular Cartilage–the Contributions From the Intrinsic Matrix Viscoelasticity and Interstitial Fluid Flows
,”
ASME J. Biomech. Eng.
,
108
(
2
), pp.
123
130
.10.1115/1.3138591
40.
Mow
,
V. C.
, and
Guo
,
X. E.
,
2002
, “
Mechano-Electrochemical Properties of Articular Cartilage: Their Inhomogeneities and Anisotropies
,”
Ann. Rev. Biomed. Eng.
,
4
(
1
), pp.
175
209
.10.1146/annurev.bioeng.4.110701.120309
41.
Mow
,
V. C.
,
Kuei
,
S. C.
,
Lai
,
W. M.
, and
Armstrong
,
C. G.
,
1980
, “
Biphasic Creep and Stress Relaxation of Articular Cartilage in Compression? Theory and Experiments
,”
ASME J. Biomech. Eng.
,
102
(
1
), pp.
73
84
.10.1115/1.3138202
42.
Schinagl
,
R. M.
,
Gurskis
,
D.
,
Chen
,
A. C.
, and
Sah
,
R. L.
,
1997
, “
Depth-Dependent Confined Compression Modulus of Full-Thickness Bovine Articular Cartilage
,”
J. Orthopaed. Res.
,
15
(
4
), pp.
499
506
.10.1002/jor.1100150404
43.
Bachrach
,
N. M.
,
Mow
,
V. C.
, and
Guilak
,
F.
,
1998
, “
Incompressibility of the Solid Matrix of Articular Cartilage Under High Hydrostatic Pressures
,”
J. Biomech.
,
31
(
5
), pp.
445
451
.10.1016/S0021-9290(98)00035-9
44.
Ateshian
,
G. A.
,
Ellis
,
B. J.
, and
Weiss
,
J. A.
,
2007
, “
Equivalence Between Short-Time Biphasic and Incompressible Elastic Material Responses
,”
ASME J. Biomech. Eng.
,
129
(
3
), pp.
405
412
.10.1115/1.2720918
45.
Wong
,
M.
,
Ponticiello
,
M.
,
Kovanen
,
V.
, and
Jurvelin
,
J. S.
,
2000
, “
Volumetric Changes of Articular Cartilage During Stress Relaxation in Unconfined Compression
,”
J. Biomech.
,
33
(
9
), pp.
1049
1054
.10.1016/S0021-9290(00)00084-1
46.
Armstrong
,
C. G.
, and
Mow
,
V. C.
,
1982
, “
Variations in the Intrinsic Mechanical Properties of Human Articular Cartilage With Age, Degeneration, and Water Content
,”
J. Bone Joint Surg. Am. Vol.
,
64
(
1
), pp.
88
94
.
47.
Chahine
,
N. O.
,
Wang
,
C. C.
,
Hung
,
C. T.
, and
Ateshian
,
G. A.
,
2004
, “
Anisotropic Strain-Dependent Material Properties of Bovine Articular Cartilage in the Transitional Range From Tension to Compression
,”
J. Biomech.
,
37
(
8
), pp.
1251
1261
.10.1016/j.jbiomech.2003.12.008
48.
Kempson
,
G. E.
,
Muir
,
H.
,
Pollard
,
C.
, and
Tuke
,
M.
,
1973
, “
The Tensile Properties of the Cartilage of Human Femoral Condyles Related to the Content of Collagen and Glycosaminoglycans
,”
Biochim. Biophys. Acta
,
297
(
2
), pp.
456
472
.10.1016/0304-4165(73)90093-7
49.
Ateshian
,
G. A.
,
Rajan
,
V.
,
Chahine
,
N. O.
,
Canal
,
C. E.
, and
Hung
,
C. T.
,
2009
, “
Modeling the Matrix of Articular Cartilage Using a Continuous Fiber Angular Distribution Predicts Many Observed Phenomena
,”
ASME J. Biomech. Eng.
,
131
(
6
), p.
061003
.10.1115/1.3118773
50.
Bergmann
,
G.
,
Deuretzbacher
,
G.
,
Heller
,
M.
,
Graichen
,
F.
,
Rohlmann
,
A.
,
Strauss
,
J.
, and
Duda
,
G. N.
,
2001
, “
Hip Contact Forces and Gait Patterns From Routine Activities
,”
J. Biomech.
,
34
(
7
), pp.
859
871
.10.1016/S0021-9290(01)00040-9
51.
Puso
,
M. A.
,
Maker
,
B. N.
,
Ferencz
,
R. M.
, and
Hallquist
,
J. O.
,
2007
, “
Nike3d: A Nonlinear, Implicit, Three-Dimensional Finite Element Code for Solid and Structural Mechanics,
” US Dept of Energy, Washington, DC. Report No. UCRL-MA-105268-SUM.
52.
Maas
,
S.
,
Rawlins
,
D.
, and
Weiss
,
J.
,
2012
, “
Postview: Finite Element Post-Processing
,” Musculoskeletal Research Laboratories. Available at: http://mrl.sci.utah.edu/software/postview
53.
Veronda
,
D. R.
, and
Westmann
,
R. A.
,
1970
, “
Mechanical Characterization of Skin-Finite Deformations
,”
J. Biomech.
,
3
(
1
), pp.
111
124
.10.1016/0021-9290(70)90055-2
54.
Puso
,
M. A.
,
2000
, “
A Highly Efficient Enhanced Assumed Strain Physically Stabilized Hexahedral Element
,”
Int. J. Num. Meth. Eng.
,
49
(
8
), pp.
1029
1064
.10.1002/1097-0207(20001120)49:8<1029::AID-NME990>3.0.CO;2-3
55.
Maas
,
S.
,
Rawlins
,
D.
,
Weiss
,
J.
, and
Ateshian
,
G.
,
2011
,
Febio: Theory Manual
,
Musculoskeletal Research Laboratories
, University of Utah, Salt Lake City, UT.
56.
Ateshian
,
G. A.
,
2007
, “
Anisotropy of Fibrous Tissues in Relation to the Distribution of Tensed and Buckled Fibers
,”
ASME J. Biomech. Eng.
,
129
(
2
), pp.
240
249
.10.1115/1.2486179
57.
Henak
,
C. R.
,
Anderson
,
A. E.
, and
Weiss
,
J. A.
,
2013
, “
Subject-Specific Analysis of Joint Contact Mechanics: Application to the Study of Osteoarthritis and Surgical Planning
,”
ASME J. Biomech. Eng.
135
(2), p.
021003
.10.1115/1.4023386
58.
Anderson
,
A. E.
,
Peters
,
C. L.
,
Tuttle
,
B. D.
, and
Weiss
,
J. A.
,
2005
, “
Subject-Specific Finite Element Model of the Pelvis: Development, Validation and Sensitivity Studies
,”
ASME J. Biomech. Eng.
,
127
(
3
), pp.
364
373
.10.1115/1.1894148
59.
Dalstra
,
M.
, and
Huiskes
,
R.
,
1995
, “
Load Transfer Across the Pelvic Bone
,”
J. Biomech.
,
28
(
6
), pp.
715
724
.10.1016/0021-9290(94)00125-N
60.
Athanasiou
,
K. A.
,
Agarwal
,
A.
, and
Dzida
,
F. J.
,
1994
, “
Comparative Study of the Intrinsic Mechanical Properties of the Human Acetabular and Femoral Head Cartilage
,”
J. Orthopaed. Res.
,
12
(
3
), pp.
340
349
.10.1002/jor.1100120306
61.
Henak
,
C. R.
,
Carruth
,
E. D.
,
Anderson
,
A. E.
,
Harris
,
M. D.
,
Ellis
,
B. J.
,
Peters
,
C. L.
, and
Weiss
,
J. A.
,
2013
, “
Finite Element Predictions of Cartilage Contact Mechanics in Hips With Retroverted Acetabula
,”
OARS Osteoarth. Cartilage
,
21
(
10
), pp.
1522
1529
.10.1016/j.joca.2013.06.008
62.
Finner
,
H.
,
1993
, “
On a Monotonicity Problem in Step-Down Multiple Test Procedures
,”
J. Am. Stat. Assoc.
,
88
(
423
), pp.
920
923
.10.1080/01621459.1993.10476358
63.
Ferguson
,
S. J.
,
Bryant
,
J. T.
, and
Ito
,
K.
,
2001
, “
The Material Properties of the Bovine Acetabular Labrum
,”
J. Orthopaed. Res.
,
19
(
5
), pp.
887
896
.10.1016/S0736-0266(01)00007-9
64.
Athanasiou
,
K. A.
,
Agarwal
,
A.
,
Muffoletto
,
A.
,
Dzida
,
F. J.
,
Constantinides
,
G.
, and
Clem
,
M.
,
1995
, “
Biomechanical Properties of Hip Cartilage in Experimental Animal Models
,”
Clin. Orthopaed. Related Res.
,
316
, pp.
254
266
.
65.
Soltz
,
M. A.
, and
Ateshian
,
G. A.
,
2000
, “
A Conewise Linear Elasticity Mixture Model for the Analysis of Tension-Compression Nonlinearity in Articular Cartilage
,”
ASME J. Biomech. Eng.
,
122
(
6
), pp.
576
586
.10.1115/1.1324669
66.
Soulhat
,
J.
,
Buschmann
,
M. D.
, and
Shirazi-Adl
,
A.
,
1999
, “
A Fibril-Network-Reinforced Biphasic Model of Cartilage in Unconfined Compression
,”
ASME J. Biomech. Eng.
,
121
(
3
), pp.
340
347
.10.1115/1.2798330
67.
Bullough
,
P.
,
Goodfellow
,
J.
, and
O'Conner
,
J.
,
1973
, “
The Relationship Between Degenerative Changes and Load-Bearing in the Human Hip
,”
J. Bone Joint Surg. Brit. Vol.
,
55
(
4
), pp.
746
758
.
68.
Harrison
,
M.
,
Schajowicz
,
F.
, and
Trueta
,
J.
,
1953
, “
Osteoarthritis of the Hip: A Study of the Nature and Evolution of the Disease
,”
J. Bone Joint Surg. Brit. Vol.
,
35
(
4
), pp.
598
626
.
69.
Byers
,
P. D.
,
Contepomi
,
C. A.
, and
Farkas
,
T. A.
,
1970
, “
A Post Mortem Study of the Hip Joint. Including the Prevalence of the Features of the Right Side
,”
Ann. Rheum. Dis.
,
29
(
1
), pp.
15
31
.10.1136/ard.29.1.15
70.
Byers
,
P. D.
,
Contepomi
,
C. A.
, and
Farkas
,
T. A.
,
1976
, “
Post-Mortem Study of the Hip Joint. II. Histological Basis for Limited and Progressive Cartilage Alterations
,”
Ann. Rheum. Dis.
,
35
(
2
), pp.
114
121
.10.1136/ard.35.2.114
71.
Gu
,
K. B.
, and
Li
,
L. P.
,
2011
, “
A Human Knee Joint Model Considering Fluid Pressure and Fiber Orientation in Cartilages and Menisci
,”
Med. Eng. Phys.
,
33
(
4
), pp.
497
503
.10.1016/j.medengphy.2010.12.001
72.
Halonen
,
K. S.
,
Mononen
,
M. E.
,
Jurvelin
,
J. S.
,
Toyras
,
J.
, and
Korhonen
,
R. K.
,
2013
, “
Importance of Depth-Wise Distribution of Collagen and Proteoglycans in Articular Cartilage–a 3D Finite Element Study of Stresses and Strains in Human Knee Joint
,”
J. Biomech.
,
46
(
6
), pp.
1184
1192
.10.1016/j.jbiomech.2012.12.025
73.
Mononen
,
M. E.
,
Mikkola
,
M. T.
,
Julkunen
,
P.
,
Ojala
,
R.
,
Nieminen
,
M. T.
,
Jurvelin
,
J. S.
, and
Korhonen
,
R. K.
,
2012
, “
Effect of Superficial Collagen Patterns and Fibrillation of Femoral Articular Cartilage on Knee Joint Mechanics-a 3D Finite Element Analysis
,”
J. Biomech.
,
45
(
3
), pp.
579
587
.10.1016/j.jbiomech.2011.11.003
74.
Rasanen
,
L. P.
,
Mononen
,
M. E.
,
Nieminen
,
M. T.
,
Lammentausta
,
E.
,
Jurvelin
,
J. S.
, and
Korhonen
,
R. K.
,
2013
, “
Implementation of Subject-Specific Collagen Architecture of Cartilage Into a 2D Computational Model of a Knee Joint–Data From the Osteoarthritis Initiative (Oai)
,”
J. Orthopaed. Res.
,
31
(
1
), pp.
10
22
.10.1002/jor.22175
75.
Shirazi
,
R.
,
Shirazi-Adl
,
A.
, and
Hurtig
,
M.
,
2008
, “
Role of Cartilage Collagen Fibrils Networks in Knee Joint Biomechanics Under Compression
,”
J. Biomech.
,
41
(
16
), pp.
3340
3348
.10.1016/j.jbiomech.2008.09.033
76.
Dabiri
,
Y.
, and
Li
,
L. P.
,
2013
, “
Altered Knee Joint Mechanics in Simple Compression Associated With Early Cartilage Degeneration
,”
Computat. Math. Meth. Med.
,
2013
, p.
862903
.
77.
Krishnan
,
R.
,
Park
,
S.
,
Eckstein
,
F.
, and
Ateshian
,
G. A.
,
2003
, “
Inhomogeneous Cartilage Properties Enhance Superficial Interstitial Fluid Support and Frictional Properties, But Do Not Provide a Homogeneous State of Stress
,”
ASME J. Biomech. Eng.
,
125
(
5
), pp.
569
577
.10.1115/1.1610018
78.
Garcia
,
J. J.
,
Altiero
,
N. J.
, and
Haut
,
R. C.
,
1998
, “
An Approach for the Stress Analysis of Transversely Isotropic Biphasic Cartilage Under Impact Load
,”
ASME J. Biomech. Eng.
,
120
(
5
), pp.
608
613
.10.1115/1.2834751
79.
Donzelli
,
P. S.
,
Spilker
,
R. L.
,
Ateshian
,
G. A.
, and
Mow
,
V. C.
,
1999
, “
Contact Analysis of Biphasic Transversely Isotropic Cartilage Layers and Correlations With Tissue Failure
,”
J. Biomech.
,
32
(
10
), pp.
1037
1047
.10.1016/S0021-9290(99)00106-2
80.
Wilson
,
W.
,
Van Rietbergen
,
B.
,
Van Donkelaar
,
C. C.
, and
Huiskes
,
R.
,
2003
, “
Pathways of Load-Induced Cartilage Damage Causing Cartilage Degeneration in the Knee After Meniscectomy
,”
J. Biomech.
,
36
(
6
), pp.
845
851
.10.1016/S0021-9290(03)00004-6
81.
Krishnan
,
R.
,
Kopacz
,
M.
, and
Ateshian
,
G. A.
,
2004
, “
Experimental Verification of the Role of Interstitial Fluid Pressurization in Cartilage Lubrication
,”
J. Orthopaed. Res.
,
22
(
3
), pp.
565
570
.10.1016/j.orthres.2003.07.002
82.
Abraham
,
C. L.
,
Maas
,
S. A.
,
Weiss
,
J. A.
,
Ellis
,
B. J.
,
Peters
,
C. L.
, and
Anderson
,
A. E.
,
2013
, “
A New Discrete Element Analysis Method for Predicting Hip Joint Contact Stresses
,”
J. Biomech.
,
46
(
6
), pp.
1121
1127
.10.1016/j.jbiomech.2013.01.012
83.
Guterl
,
C. C.
,
Gardner
,
T. R.
,
Rajan
,
V.
,
Ahmad
,
C. S.
,
Hung
,
C. T.
, and
Ateshian
,
G. A.
,
2009
, “
Two-Dimensional Strain Fields on the Cross-Section of the Human Patellofemoral Joint Under Physiological Loading
,”
J. Biomech.
,
42
(
9
), pp.
1275
1281
.10.1016/j.jbiomech.2009.03.034
84.
Li
,
J.
,
Stewart
,
T. D.
,
Jin
,
Z.
,
Wilcox
,
R. K.
, and
Fisher
,
J.
,
2013
, “
The Influence of Size, Clearance, Cartilage Properties, Thickness and Hemiarthroplasty on the Contact Mechanics of the Hip Joint With Biphasic Layers
,”
J. Biomech
.
46
(10), pp.
1641
1647
.10.1016/j.jbiomech.2013.04.009
85.
Miozzari
,
H. H.
,
Clark
,
J. M.
,
Jacob
,
H. A.
,
Von Rechenberg
,
B.
, and
Notzli
,
H. P.
,
2004
, “
Effects of Removal of the Acetabular Labrum in a Sheep Hip Model
,”
OARS Osteoarth. Cartilage
,
12
(
5
), pp.
419
430
.10.1016/j.joca.2004.02.008
86.
Konrath
,
G. A.
,
Hamel
,
A. J.
,
Olson
,
S. A.
,
Bay
,
B.
, and
Sharkey
,
N. A.
,
1998
, “
The Role of the Acetabular Labrum and the Transverse Acetabular Ligament in Load Transmission in the Hip
,”
J. Bone Joint Surg. Am. Vol.
,
80
(
12
), pp.
1781
1788
.
You do not currently have access to this content.