Microgravity and its inherent reduction in body-weight associated mechanical loading encountered during spaceflight have been shown to produce deleterious effects on important human physiological processes. Rodent hindlimb unloading is the most widely-used ground-based microgravity model. Unfortunately, results from these studies are difficult to translate to the human condition due to major anatomic and physiologic differences between the two species such as bone microarchitecture and healing rates. The use of translatable ovine models to investigate orthopedic-related conditions has become increasingly popular due to similarities in size and skeletal architecture of the two species. Thus, a new translational model of simulated microgravity was developed using common external fixation techniques to shield the metatarsal bone of the ovine hindlimb during normal daily activity over an 8 week period. Bone mineral density, quantified via dual-energy X-ray absorptiometry, decreased 29.0% (p < 0.001) in the treated metatarsi. Post-sacrifice biomechanical evaluation revealed reduced bending modulus (–25.8%, p < 0.05) and failure load (–27.8%, p < 0.001) following the microgravity treatment. Microcomputed tomography and histology revealed reduced bone volume (–35.9%, p < 0.01), trabecular thickness (–30.9%, p < 0.01), trabecular number (–22.5%, p < 0.05), bone formation rate (–57.7%, p < 0.01), and osteoblast number (–52.5%, p < 0.001), as well as increased osteoclast number (269.1%, p < 0.001) in the treated metatarsi of the microgravity group. No significant alterations occurred for any outcome parameter in the Sham Surgery Group. These data indicate that the external fixation technique utilized in this model was able to effectively unload the metatarsus and induce significant radiographic, biomechanical, and histomorphometric alterations that are known to be induced by spaceflight. Further, these findings demonstrate that the physiologic mechanisms driving bone remodeling in sheep and humans during prolonged periods of unloading (specifically increased osteoclast activity) are more similar than previously utilized models, allowing more comprehensive investigations of microgravity-related bone remodeling as it relates to human spaceflight.

References

References
1.
Giangregorio
,
L.
, and
Blimkie
,
C. J.
,
2002
, “
Skeletal Adaptations to Alterations in Weight-Bearing Activity: A Comparison of Models of Disuse Osteoporosis
,”
Sports Med.
,
32
(
7
), pp.
459
476
.10.2165/00007256-200232070-00005
2.
Collet
,
P.
,
Uebelhart
,
D.
,
Vico
,
L.
,
Moro
,
L.
,
Hartmann
,
D.
,
Roth
,
M.
, and
Alexandre
,
C.
,
1997
, “
Effects of 1- and 6-Month Spaceflight on Bone Mass and Biochemistry in Two Humans
,”
Bone
,
20
(
6
), pp.
547
551
.10.1016/S8756-3282(97)00052-5
3.
Vico
,
L.
,
Collet
,
P.
,
Guignandon
,
A.
,
Lafage-Proust
,
M. H.
,
Thomas
,
T.
,
Rehaillia
,
M.
, and
Alexandre
,
C.
,
2000
, “
Effects of Long-Term Microgravity Exposure on Cancellous and Cortical Weight-Bearing Bones of Cosmonauts
,”
Lancet
,
355
(
9215
), pp.
1607
1611
.10.1016/S0140-6736(00)02217-0
4.
Holick
,
M. F.
,
1998
, “
Perspective on the Impact of Weightlessness on Calcium and Bone Metabolism
,”
Bone
,
22
(
5 Suppl
), pp.
105S
111S
.10.1016/S8756-3282(98)00014-3
5.
Vogel
,
J. M.
,
1975
, “
Bone Mineral Measurement: Skylab Experiment M-078
,”
Acta Astronaut.
,
2
(
1–2
), pp.
129
139
.10.1016/0094-5765(75)90049-1
6.
Lang
,
T. F.
,
2006
, “
What Do We Know About Fracture Risk in Long-Duration Spaceflight?
,”
J. Musculoskeletal Neuronal Interact.
,
6
(
4
), pp.
319
321
.
7.
Keyak
,
J. H.
,
Kaneko
,
T. S.
,
Tehranzadeh
,
J.
, and
Skinner
,
H. B.
,
2005
, “
Predicting Proximal Femoral Strength Using Structural Engineering Models
,”
Clin. Orthop. Relat. Res.
,
437
, pp.
219
228
.10.1097/01.blo.0000164400.37905.22
8.
Nelson
,
E. S.
,
Lewandowski
,
B.
,
Licata
,
A.
, and
Myers
,
J. G.
,
2009
, “
Development and Validation of a Predictive Bone Fracture Risk Model for Astronauts
,”
Ann. Biomed. Eng.
,
37
(
11
), pp.
2337
2359
.10.1007/s10439-009-9779-x
9.
Abram
,
A. C.
,
Keller
,
T. S.
, and
Spengler
,
D. M.
,
1988
, “
The Effects of Simulated Weightlessness on Bone Biomechanical and Biochemical Properties in the Maturing Rat
,”
J. Biomech.
,
21
(
9
), pp.
755
767
.10.1016/0021-9290(88)90284-9
10.
Allen
,
M. R.
, and
Bloomfield
,
S. A.
,
2003
, “
Hindlimb Unloading Has a Greater Effect on Cortical Compared With Cancellous Bone in Mature Female Rats
,”
J. Appl. Physiol.
,
94
(
2
), pp.
642
650
.
11.
Allen
,
M. R.
,
Hogan
,
H. A.
, and
Bloomfield
,
S. A.
,
2006
, “
Differential Bone and Muscle Recovery Following Hindlimb Unloading in Skeletally Mature Male Rats
,”
J. Musculoskeletal Neuronal Interact.
,
6
(
3
), pp.
217
225
.
12.
Bloomfield
,
S. A.
,
Allen
,
M. R.
,
Hogan
,
H. A.
, and
Delp
,
M. D.
,
2002
, “
Site- and Compartment-Specific Changes in Bone with Hindlimb Unloading in Mature Adult Rats
,”
Bone
,
31
(
1
), pp.
149
157
.10.1016/S8756-3282(02)00785-8
13.
Dehority
,
W.
,
Halloran
,
B. P.
,
Bikle
,
D. D.
,
Curren
,
T.
,
Kostenuik
,
P. J.
,
Wronski
,
T. J.
,
Shen
,
Y.
,
Rabkin
,
B.
,
Bouraoui
,
A.
, and
Morey-Holton
,
E.
,
1999
, “
Bone and Hormonal Changes Induced by Skeletal Unloading in the Mature Male Rat
,”
Am. J. Physiol.
,
276
(
1 Pt 1
), pp.
E62
E69
.
14.
Matsumoto
,
T.
,
Nakayama
,
K.
,
Kodama
,
Y.
,
Fuse
,
H.
,
Nakamura
,
T.
, and
Fukumoto
,
S.
,
1998
, “
Effect of Mechanical Unloading and Reloading on Periosteal Bone Formation and Gene Expression in Tail-Suspended Rapidly Growing Rats
,”
Bone
,
22
(
5 Suppl
), pp.
89S
93S
.10.1016/S8756-3282(98)00018-0
15.
Swift
,
J. M.
,
Nilsson
,
M. I.
,
Hogan
,
H. A.
,
Sumner
,
L. R.
, and
Bloomfield
,
S. A.
,
2010
, “
Simulated Resistance Training During Hindlimb Unloading Abolishes Disuse Bone Loss and Maintains Muscle Strength
,”
J. Bone Miner. Res.
,
25
(
3
), pp.
564
574
.10.1359/jbmr.090811
16.
Newton
,
B. I.
,
Cooper
,
R. C.
,
Gilbert
,
J. A.
,
Johnson
,
R. B.
, and
Zardiackas
,
L. D.
,
2004
, “
The Ovariectomized Sheep as a Model for Human Bone Loss
,”
J. Comp. Pathol.
,
130
(
4
), pp.
323
326
.10.1016/j.jcpa.2003.12.007
17.
Den Boer
,
F. C.
,
Patka
,
P.
,
Bakker
,
F. C.
,
Wippermann
,
B. W.
,
Van Lingen
,
A.
,
Vink
,
G. Q.
,
Boshuizen
,
K.
, and
Haarman
,
H. J.
,
1999
, “
New Segmental Long Bone Defect Model in Sheep: Quantitative Analysis of Healing with Dual Energy X-Ray Absorptiometry
,”
J. Orthop. Res.
,
17
(
5
), pp.
654
660
.10.1002/jor.1100170506
18.
Martini
,
L.
,
Fini
,
M.
,
Giavaresi
,
G.
, and
Giardino
,
R.
,
2001
, “
Sheep Model in Orthopedic Research: A Literature Review
,”
Comp. Med.
,
51
(
4
), pp.
292
299
.
19.
Lyons
,
A. S.
,
Sherman
,
B. P.
,
Puttlitz
,
C. M.
,
Patel
,
V. V.
,
Abjornson
,
C.
,
Turner
,
A. S.
,
Seim
,
H. B.
, III
,
Burger
,
E. L.
, and
Lindley
,
E. M.
,
2011
, “
Failure of Resorbable Plates and Screws in an Ovine Model of Anterior Cervical Discectomy and Fusion
,”
Spine J.
,
11
(
9
), pp.
876
883
.10.1016/j.spinee.2011.06.016
20.
Santoni
,
B. G.
,
Mcgilvray
,
K. C.
,
Lyons
,
A. S.
,
Bansal
,
M.
,
Turner
,
A. S.
,
Macgillivray
,
J. D.
,
Coleman
,
S. H.
, and
Puttlitz
,
C. M.
,
2010
, “
Biomechanical Analysis of an Ovine Rotator Cuff Repair Via Porous Patch Augmentation in a Chronic Rupture Model
,”
Am. J. Sports Med.
,
38
(
4
), pp.
679
686
.10.1177/0363546510366866
21.
Hee
,
C. K.
,
Dines
,
J. S.
,
Dines
,
D. M.
,
Roden
,
C. M.
,
Wisner-Lynch
,
L. A.
,
Turner
,
A. S.
,
Mcgilvray
,
K. C.
,
Lyons
,
A. S.
,
Puttlitz
,
C. M.
, and
Santoni
,
B. G.
,
2011
, “
Augmentation of a Rotator Cuff Suture Repair Using rhPDGF-BB and a Type I Bovine Collagen Matrix in an Ovine Model
,”
Am. J. Sports Med.
,
39
(
8
), pp.
1630
1639
.10.1177/0363546511404942
22.
Judex
,
S.
,
Boyd
,
S.
,
Qin
,
Y. X.
,
Turner
,
S.
,
Ye
,
K.
,
Muller
,
R.
, and
Rubin
,
C.
,
2003
, “
Adaptations of Trabecular Bone to Low Magnitude Vibrations Result in More Uniform Stress and Strain Under Load
,”
Ann. Biomed. Eng.
,
31
(
1
), pp.
12
20
.10.1114/1.1535414
23.
Claes
,
L. E.
,
Wilke
,
H. J.
,
Augat
,
P.
,
Rubenacker
,
S.
, and
Margevicius
,
K. J.
,
1995
, “
Effect of Dynamization on Gap Healing of Diaphyseal Fractures Under External Fixation
,”
Clin. Biomech. (Bristol, Avon)
,
10
(
5
), pp.
227
234
.10.1016/0268-0033(95)99799-8
24.
Egermann
,
M.
,
Goldhahn
,
J.
,
Holz
,
R.
,
Schneider
,
E.
, and
Lill
,
C. A.
,
2008
, “
A Sheep Model for Fracture Treatment in Osteoporosis: Benefits of the Model Versus Animal Welfare
,”
Lab Anim.
,
42
(
4
), pp.
453
464
.10.1258/la.2007.007001
25.
Pearce
,
A. I.
,
Richards
,
R. G.
,
Milz
,
S.
,
Schneider
,
E.
, and
Pearce
,
S. G.
,
2007
, “
Animal Models for Implant Biomaterial Research in Bone: A Review
,”
Eur. Cells Mater.
,
13
, pp.
1
10
.
26.
Draper
,
E. R.
, and
Goodship
,
A. E.
,
2003
, “
A Novel Technique for Four-Point Bending of Small Bone Samples With Semi-Automatic Analysis
,”
J. Biomech.
,
36
(
10
), pp.
1497
1502
.10.1016/S0021-9290(03)00129-5
27.
Santoni
,
B. G.
,
Womack
,
W. J.
,
Wheeler
,
D. L.
, and
Puttlitz
,
C. M.
,
2007
, “
A Mechanical and Computational Investigation on the Effects of Conduit Orientation on the Strength of Massive Bone Allografts
,”
Bone
,
41
(
5
), pp.
769
774
.10.1016/j.bone.2007.07.011
28.
Leahy
,
P. D.
,
Smith
,
B. S.
,
Easton
,
K. L.
,
Kawcak
,
C. E.
,
Eickhoff
,
J. C.
,
Shetye
,
S. S.
, and
Puttlitz
,
C. M.
,
2010
, “
Correlation of Mechanical Properties Within the Equine Third Metacarpal With Trabecular Bending and Multi-Density Micro-Computed Tomography Data
,”
Bone
,
46
(
4
), pp.
1108
1113
.10.1016/j.bone.2010.01.366
29.
Bouxsein
,
M. L.
,
Boyd
,
S. K.
,
Christiansen
,
B. A.
,
Guldberg
,
R. E.
,
Jepsen
,
K. J.
, and
Muller
,
R.
,
2010
, “
Guidelines for Assessment of Bone Microstructure in Rodents Using Micro-Computed Tomography
,”
J. Bone Miner. Res.
,
25
(
7
), pp.
1468
1486
.10.1002/jbmr.141
30.
Parfitt
,
A. M.
,
Drezner
,
M. K.
,
Glorieux
,
F. H.
,
Kanis
,
J. A.
,
Malluche
,
H.
,
Meunier
,
P. J.
,
Ott
,
S. M.
, and
Recker
,
R. R.
,
1987
, “
Bone Histomorphometry: Standardization of Nomenclature, Symbols, and Units. Report of the ASBMR Histomorphometry Nomenclature Committee
,”
J. Bone Miner. Res.
,
2
(
6
), pp.
595
610
.10.1002/jbmr.5650020617
31.
Dempster
,
D. W.
,
Compston
,
J. E.
,
Drezner
,
M. K.
,
Glorieux
,
F. H.
,
Kanis
,
J. A.
,
Malluche
,
H.
,
Meunier
,
P. J.
,
Ott
,
S. M.
,
Recker
,
R. R.
, and
Parfitt
,
A. M.
,
2013
, “
Standardized Nomenclature, Symbols, and Units for Bone Histomorphometry: A 2012 Update of the Report of the ASBMR Histomorphometry Nomenclature Committee
,”
J. Bone Miner. Res.
,
28
(
1
), pp.
1
16
.10.1002/jbmr.1805
32.
Hardy
,
R.
, and
Cooper
,
M. S.
,
2009
, “
Bone Loss in Inflammatory Disorders
,”
J. Endocrinol.
,
201
(
3
), pp.
309
320
.10.1677/JOE-08-0568
33.
Nonaka
,
K.
,
Fukuda
,
S.
,
Aoki
,
K.
,
Yoshida
,
T.
, and
Ohya
,
K.
,
2006
, “
Regional Distinctions in Cortical Bone Mineral Density Measured by pQCT Can Predict Alterations in Material Property at the Tibial Diaphysis of the Cynomolgus Monkey
,”
Bone
,
38
(
2
), pp.
265
272
.10.1016/j.bone.2005.08.012
34.
Basso
,
N.
,
Jia
,
Y.
,
Bellows
,
C. G.
, and
Heersche
,
J. N.
,
2005
, “
The Effect of Reloading on Bone Volume, Osteoblast Number, and Osteoprogenitor Characteristics: Studies in Hind Limb Unloaded Rats
,”
Bone
,
37
(
3
), pp.
370
378
.10.1016/j.bone.2005.04.033
35.
Basso
,
N.
,
Bellows
,
C. G.
, and
Heersche
,
J. N. M.
,
2005
, “
Effect of Simulated Weightlessness on Osteoprogenitor Cell Number and Proliferation in Young and Adult Rats
,”
Bone
,
36
(
1
), pp.
173
183
.10.1016/j.bone.2004.09.016
36.
Sessions
,
N. D.
,
Halloran
,
B. P.
,
Bikle
,
D. D.
,
Wronski
,
T. J.
,
Cone
,
C. M.
, and
Morey-Holton
,
E.
,
1989
, “
Bone Response to Normal Weight Bearing after a Period of Skeletal Unloading
,”
Am. J. Physiol.
,
257
(
4 Pt 1
), pp.
E606
E610
.
37.
Smith
,
S. M.
,
Nillen
,
J. L.
,
Leblanc
,
A.
,
Lipton
,
A.
,
Demers
,
L. M.
,
Lane
,
H. W.
, and
Leach
,
C. S.
,
1998
, “
Collagen Cross-Link Excretion During Space Flight and Bed Rest
,”
J. Clin. Endocrinol. Metab.
,
83
(
10
), pp.
3584
3591
.10.1210/jc.83.10.3584
38.
Oganov
,
V. S.
,
Rakhmanov
,
A. S.
,
Novikov
,
V. E.
,
Zatsepin
,
S. T.
,
Rodionova
,
S. S.
, and
Cann
,
C.
,
1991
, “
The State of Human Bone Tissue During Space-Flight
,”
Acta Astronaut.
,
23
, pp.
129
133
.10.1016/0094-5765(91)90109-I
39.
Vico
,
L.
, and
Alexandre
,
C.
,
1992
, “
Microgravity and Bone Adaptation at the Tissue-Level
,”
J. Bone Miner. Res.
,
7
, pp.
S445
S447
.10.1002/jbmr.5650071415
You do not currently have access to this content.