The uterine suspensory tissue (UST), which includes the cardinal (CL) and uterosacral ligaments (USL), plays an important role in resisting pelvic organ prolapse (POP). We describe a technique for quantifying the in vivo time-dependent force-displacement behavior of the UST, demonstrate its feasibility, compare data from POP patients to normal subjects previously reported, and use the results to identify the properties of the CL and USL via biomechanical modeling. Fourteen women with prolapse, without prior surgeries, who were scheduled for surgery, were selected from an ongoing study on POP. We developed a computer-controlled linear servo actuator, which applied a continuous force and simultaneously recorded cervical displacement. Immediately prior to surgery, the apparatus was used to apply three “ramp and hold” trials. After a 1.1 N preload was applied to remove slack in the UST, a ramp rate of 4 mm/s was used up to a maximum force of 17.8 N. Each trial was analyzed and compared with the tissue stiffness and energy absorbed during the ramp phase and normalized final force during the hold phase. A simplified four-cable model was used to analyze the material behavior of each ligament. The mean ± SD stiffnesses of the UST were 0.49 ± 0.13, 0.61 ± 0.22, and 0.59 ± 0.2 N/mm from trial 1 to 3, with the latter two values differing significantly from the first. The energy absorbed significantly decreased from trial 1 (0.27 ± 0.07) to 2 (0.23 ± 0.08) and 3 (0.22 ± 0.08 J) but not from trial 2 to 3. The normalized final relaxation force increased significantly with trial 1. Modeling results for trial 1 showed that the stiffnesses of CL and USL were 0.20 ± 0.06 and 0.12 ± 0.04 N/mm, respectively. Under the maximum load applied in this study, the strain in the CL and USL approached about 100%. In the relaxation phase, the peak force decreased by 44 ± 4% after 60 s. A servo actuator apparatus and intraoperative testing strategy proved successful in obtaining in vivo time-dependent material properties data in representative sample of POP. The UST exhibited visco-hyperelastic behavior. Unlike a knee ligament, the length of UST could stretch to twice their initial length under the maximum force applied in this study.

References

References
1.
Olsen
,
A. L.
,
Smith
,
V. J.
,
Bergstrom
,
J. O.
,
Colling
,
J. C.
, and
Clark
,
A. L.
,
1997
, “
Epidemiology of Surgically Managed Pelvic Organ Prolapse and Urinary Incontinence
,”
Obstet. Gynecol.
,
89
(
4
), pp.
501
506
.10.1016/S0029-7844(97)00058-6
2.
Boyles
,
S. H.
,
Weber
,
A. M.
, and
Meyn
,
L.
,
2003
, “
Procedures for Pelvic Organ Prolapse in the United States, 1979–1997
,”
Am. J. Obstet. Gynecol.
,
188
(
1
), pp.
108
115
.10.1067/mob.2003.101
3.
Subak
,
L. L.
,
Waetjen
,
L. E.
,
Van Den Eeden
,
S.
,
Thom
,
D. H.
,
Vittinghoff
,
E.
, and
Brown
,
J. S.
,
2001
, “
Cost of Pelvic Organ Prolapse Surgery in the United States
,”
Obstet. Gynecol.
,
98
(
4
), pp.
646
651
.10.1016/S0029-7844(01)01472-7
4.
Chen
,
L.
,
Ashton-Miller
,
J. A.
,
Hsu
,
Y.
, and
DeLancey
,
J. O.
,
2006
, “
Interaction Among Apical Support, Levator Ani Impairment, and Anterior Vaginal Wall Prolapse
,”
Obstet. Gynecol.
,
108
(
2
), pp.
324
332
.10.1097/01.AOG.0000227786.69257.a8
5.
Kearney
,
R.
,
Miller
,
J. M.
,
Ashton-Miller
,
J. A.
, and
DeLancey
,
J. O.
,
2006
, “
Obstetric Factors Associated With Levator Ani Muscle Injury After Vaginal Birth
,”
Obstet. Gynecol.
,
107
(
1
), pp.
144
149
.10.1097/01.AOG.0000194063.63206.1c
6.
Ashton-Miller
,
J. A.
, and
DeLancey
,
J. O.
,
2009
, “
On the Biomechanics of Vaginal Birth and Common Sequelae
,”
Annu. Rev. Biomed. Eng.
,
11
, pp.
163
176
.10.1146/annurev-bioeng-061008-124823
7.
Pearce
,
M.
,
Swift
,
S.
, and
Goodnight
,
W.
,
2008
, “
Pelvic Organ Prolapse: Is There a Difference in POPQ Exam Results Based on Time of Day, Morning or Afternoon?
,”
Am. J. Obstet. Gynecol.
,
199
(
2
), pp.
200.e1
200.e5
. 10.1016/J.Ajog.2008.05.012
8.
Summers
,
A.
,
Winkel
,
L. A.
,
Hussain
,
H. K.
, and
DeLancey
,
J. O.
,
2006
, “
The Relationship Between Anterior and Apical Compartment Support
,”
Am. J. Obstet. Gynecol.
,
194
(
5
), pp.
1438
1443
.10.1016/j.ajog.2006.01.057
9.
DeLancey
,
J. O.
,
1992
, “
Anatomic Aspects of Vaginal Eversion After Hysterectomy
,”
Am. J. Obstet. Gynecol.
,
166
(
6 Pt 1
), pp.
1717
1724
.10.1016/0002-9378(92)91562-O
10.
Ramanah
,
R.
,
Berger
,
M. B.
,
Chen
,
L. Y.
,
Riethmuller
,
D.
, and
DeLancey
,
J. O. L.
,
2012
, “
See It in 3D! Researchers Examined Structural Links Between the Cardinal and Uterosacral Ligaments
,”
Am. J. Obstet. Gynecol.
,
207
(
5
), pp.
437.e1
437.e7
. 10.1016/J.Ajog.2012.08.036
11.
Luo
,
J.
,
Ashton-Miller
,
J. A.
, and
DeLancey
,
J. O. L.
,
2011
, “
A Model Patient: Female Pelvic Anatomy can be Viewed in Diverse 3-Dimensional Images With a New Interactive Tool
,”
Am. J. Obstet. Gynecol.
,
205
(
4
), pp.
391.e1
391.e2
. 10.1016/J.Ajog.2011.08.018
12.
Fung
,
Y.
,
1993
,
Biomechanics: Mechanical Properties of Living Tissues
,
2nd ed.
,
Springer
,
New York
.
13.
Woo
,
S. L.-Y.
,
Hollis
,
J. M.
,
Adams
,
D. J.
,
Lyon
,
R. M.
, and
Takai
,
S.
,
1991
, “
Tensile Properties of the Human Femur-Anterior Cruciate Ligament-Tibia Complex the Effects of Specimen Age and Orientation
,”
Am. J. Sports Med.
,
19
(
3
), pp.
217
225
.10.1177/036354659101900303
14.
Campbell
,
R. M.
,
1950
, “
The Anatomy and Histology of the Sacrouterine Ligaments
,”
Am. J. Obstet. Gynecol.
,
59
(
1
), pp.
1
12
.
15.
Range
,
R. L.
, and
Woodburne
,
R. T.
,
1964
, “
The Gross and Microscopic Anatomy of the Transverse Cervical Ligament
,”
Am. J. Obstet. Gynecol.
,
90
, pp.
460
467
.
16.
Cole
,
E. E.
,
Leu
,
P. B.
,
Gomelsky
,
A.
,
Revelo
,
P.
,
Shappell
,
H.
,
Scarpero
,
H. M.
, and
Dmochowski
,
R. R.
,
2006
, “
Histopathological Evaluation of the Uterosacral Ligament: Is This a Dependable Structure for Pelvic Reconstruction?
,”
BJU Int.
,
97
(
2
), pp.
345
348
.10.1111/j.1464-410X.2005.05903.x
17.
Ramanah
,
R.
,
Berger
,
M. B.
,
Parratte
,
B. M.
, and
DeLancey
,
J. O.
,
2012
, “
Anatomy and Histology of Apical Support: A Literature Review Concerning Cardinal and Uterosacral Ligaments
,”
Int. Urogynecol. J.
,
23
(
11
), pp.
1483
1494
.10.1007/s00192-012-1819-7
18.
Vu
,
D.
,
Haylen
,
B. T.
,
Tse
,
K.
, and
Farnsworth
,
A.
,
2010
, “
Surgical Anatomy of the Uterosacral Ligament
,”
Int. Urogynecol. J.
,
21
(
9
), pp.
1123
1128
.10.1007/s00192-010-1147-8
19.
Bump
,
R. C.
,
Mattiasson
,
A.
,
Bo
,
K.
,
Brubaker
,
L. P.
,
DeLancey
,
J. O.
,
Klarskov
,
P.
,
Shull
,
B. L.
, and
Smith
,
A. R.
,
1996
, “
The Standardization of Terminology of Female Pelvic Organ Prolapse and Pelvic Floor Dysfunction
,”
Am. J. Obstet. Gynecol.
,
175
(
1
), pp.
10
17
.10.1016/S0002-9378(96)70243-0
20.
Bartscht
,
K. D.
, and
DeLancey
,
J. O.
,
1988
, “
A Technique to Study the Passive Supports of the Uterus
,”
Obstet. Gynecol.
,
72
(
6
), pp.
940
943
.
21.
Foon
,
R.
,
Agur
,
W.
,
Kingsly
,
A.
,
White
,
P.
, and
Smith
,
P.
,
2012
, “
Traction on the Cervix in Theatre Before Anterior Repair: Does It Tell Us When to Perform a Concomitant Hysterectomy?
,”
Eur. J. Obstet. Gynecol. Reprod. Biol.
,
160
(
2
), pp.
205
209
.10.1016/j.ejogrb.2011.11.002
22.
Chen
,
L.
,
Ramanah
,
R.
,
Hsu
,
Y.
,
Ashton-Miller
,
J. A.
, and
DeLancey
,
J. O.
,
2013
, “
Cardinal and Deep Uterosacral Ligament Lines of Action: MRI Based 3D Technique Development and Preliminary Findings in Normal Women
,”
Int. Urogynecol. J.
,
24
(
1
), pp.
37
45
.10.1007/s00192-012-1801-4
23.
Hsu
,
Y.
,
Summers
,
A.
,
Hussain
,
H. K.
,
Guire
,
K. E.
, and
DeLancey
,
J. O.
,
2006
, “
Levator Plate Angle in Women With Pelvic Organ Prolapse Compared to Women With Normal Support Using Dynamic MR Imaging
,”
Am. J. Obstet. Gynecol.
,
194
(
5
), pp.
1427
1433
.10.1016/j.ajog.2006.01.055
24.
Luo
,
J.
,
Betschart
,
C.
,
Chen
,
L.
,
Ashton-Miller
,
J. A.
, and
DeLancey
,
J. O.
,
2013
, “
Using Stress MRI to Analyze the 3D Changes in Apical Ligament Geometry From Rest to Maximal Valsalva: A Pilot Study
,”
Int. Urogynecol. J.
(in press). 10.1007/s00192-013-2211-y
25.
Reay Jones
,
N.
,
Healy
,
J.
,
King
,
L.
,
Saini
,
S.
,
Shousha
,
S.
, and
Allen-Mersh
,
T.
,
2003
, “
Pelvic Connective Tissue Resilience Decreases With Vaginal Delivery, Menopause and Uterine Prolapse
,”
Br. J. Surg.
,
90
(
4
), pp.
466
472
.10.1002/bjs.4065
26.
Rivaux
,
G.
,
Rubod
,
C.
,
Dedet
,
B.
,
Brieu
,
M.
,
Gabriel
,
B.
, and
Cosson
,
M.
,
2013
, “
Comparative Analysis of Pelvic Ligaments: A Biomechanics Study
,”
Int. Urogynecol. J.
,
24
(
1
), pp.
135
139
.10.1007/s00192-012-1861-5
27.
Martins
,
P.
,
Silva-Filho
,
A. L.
,
Fonseca
,
A. M.
,
Santos
,
A.
,
Santos
,
L.
,
Mascarenhas
,
T.
,
Jorge
,
R. M.
, and
Ferreira
,
A. M.
,
2013
, “
Strength of Round and Uterosacral Ligaments: A Biomechanical Study
,”
Arch. Gynecol. Obstet.
,
287
(
2
), pp.
313
318
.10.1007/s00404-012-2564-3
28.
Moalli
,
P. A.
,
Shand
,
S. H.
,
Zyczynski
,
H. M.
,
Gordy
,
S. C.
, and
Meyn
,
L. A.
,
2005
, “
Remodeling of Vaginal Connective Tissue in Patients With Prolapse
,”
Obstet. Gynecol.
,
106
(
5 Pt 1
), pp.
953
963
.10.1097/01.AOG.0000182584.15087.dd
29.
Gabriel
,
B.
,
Watermann
,
D.
,
Hancke
,
K.
,
Gitsch
,
G.
,
Werner
,
M.
,
Tempfer
,
C.
, and
Zur Hausen
,
A.
,
2006
, “
Increased Expression of Matrix Metalloproteinase 2 in Uterosacral Ligaments Is Associated With Pelvic Organ Prolapse
,”
Int. Urogynecol. J.
,
17
(
5
), pp.
478
482
.10.1007/s00192-005-0045-y
30.
Ewies
,
A. A.
,
Al-Azzawi
,
F.
, and
Thompson
,
J.
,
2003
, “
Changes in Extracellular Matrix Proteins in the Cardinal Ligaments of Post-Menopausal Women With or Without Prolapse: A Computerized Immunohistomorphometric Analysis
,”
Hum. Reprod.
,
18
(
10
), pp.
2189
2195
.10.1093/humrep/deg420
31.
Rahn
,
D. D.
,
Ruff
,
M. D.
,
Brown
,
S. A.
,
Tibbals
,
H. F.
, and
Word
,
R. A.
,
2008
, “
Biomechanical Properties of the Vaginal Wall: Effect of Pregnancy, Elastic Fiber Deficiency, and Pelvic Organ Prolapse
,”
Am. J. Obstet. Gynecol.
,
198
(
5
), pp.
590.e1
590.e6
.10.1016/j.ajog.2008.02.022
32.
Chen
,
L.
,
Ashton-Miller
,
J. A.
, and
DeLancey
,
J. O.
,
2009
, “
A 3D Finite Element Model of Anterior Vaginal Wall Support to Evaluate Mechanisms Underlying Cystocele Formation
,”
J. Biomech.
,
42
(
10
), pp.
1371
1377
.10.1016/j.jbiomech.2009.04.043
33.
Lipps
,
D. B.
,
Oh
,
Y. K.
,
Ashton-Miller
,
J. A.
, and
Wojtys
,
E. M.
,
2012
, “
Morphologic Characteristics Help Explain the Gender Difference in Peak Anterior Cruciate Ligament Strain During a Simulated Pivot Landing
,”
Am. J. Sports Med.
,
40
(
1
), pp.
32
40
.10.1177/0363546511422325
You do not currently have access to this content.