Approximately 7.5 × 106 patients in the US currently suffer from end-stage heart failure. The FDA has recently approved the designations of the Thoratec HeartMate II ventricular assist device (VAD) for both bridge-to-transplant and destination therapy (DT) due to its mechanical durability and improved hemodynamics. However, incidence of pump thrombosis and thromboembolic events remains high, and the life-long complex pharmacological regimens are mandatory in its VAD recipients. We have previously successfully applied our device thrombogenicity emulation (DTE) methodology for optimizing device thromboresistance to the Micromed Debakey VAD, and demonstrated that optimizing device features implicated in exposing blood to elevated shear stresses and exposure times significantly reduces shear-induced platelet activation and significantly improves the device thromboresistance. In the present study, we compared the thrombogenicity of the FDA-approved HeartMate II VAD with the DTE-optimized Debakey VAD (now labeled HeartAssist 5). With quantitative probability density functions of the stress accumulation along large number of platelet trajectories within each device which were extracted from numerical flow simulations in each device, and through measurements of platelet activation rates in recirculation flow loops, we specifically show that: (a) Platelets flowing through the HeartAssist 5 are exposed to significantly lower stress accumulation that lead to platelet activation than the HeartMate II, especially at the impeller-shroud gap regions (b) Thrombus formation patterns observed in the HeartMate II are absent in the HeartAssist 5 (c) Platelet activation rates (PAR) measured in vitro with the VADs mounted in recirculation flow-loops show a 2.5-fold significantly higher PAR value for the HeartMate II. This head to head thrombogenic performance comparative study of the two VADs, one optimized with the DTE methodology and one FDA-approved, demonstrates the efficacy of the DTE methodology for drastically reducing the device thrombogenic potential, validating the need for a robust in silico/in vitro optimization methodology for improving cardiovascular devices thromboresistance.

References

References
1.
Go
,
A. S.
,
Mozaffarian
,
D.
,
Roger
,
V. L.
,
Benjamin
,
E. J.
,
Berry
,
J. D.
,
Borden
,
W. B.
,
Bravata
,
D. M.
,
Dai
,
S.
,
Ford
,
E. S.
,
Fox
,
C. S.
,
Franco
,
S.
,
Fullerton
,
H. J.
,
Gillespie
,
C.
,
Hailpern
,
S. M.
,
Heit
,
J. A.
,
Howard
,
V. J.
,
Huffman
,
M. D.
,
Kissela
,
B. M.
,
Kittner
,
S. J.
,
Lackland
,
D. T.
,
Lichtman
,
J. H.
,
Lisabeth
,
L. D.
,
Magid
,
D.
,
Marcus
,
G. M.
,
Marelli
,
A.
,
Matchar
,
D. B.
,
Mcguire
,
D. K.
,
Mohler
,
E. R.
,
Moy
,
C. S.
,
Mussolino
,
M. E.
,
Nichol
,
G.
,
Paynter
,
N. P.
,
Schreiner
,
P. J.
,
Sorlie
,
P. D.
,
Stein
,
J.
,
Turan
,
T. N.
,
Virani
,
S. S.
,
Wong
,
N. D.
,
Woo
,
D.
, and
Turner
,
M. B.
,
2013
, “
Heart Disease and Stroke Statistics–2013 Update: A Report from the American Heart Association
,”
Circulation
,
127
(
1
), pp.
e6
e245
.10.1161/CIR.0b013e31828124ad
2.
Kurihara
,
C.
,
Ono
,
M.
,
Nishimura
,
T.
,
Nawata
,
K.
,
Kinoshita
,
O.
,
Hisagi
,
M.
,
Motomura
,
N.
, and
Kyo
,
S.
,
2011
, “
Prolonged Biventricular Assist Device Support as a Bridge to Heart Transplantation
,”
Int. J. Artif. Organs
,
14
(
4
), pp.
367
370
.10.1007/s10047-011-0593-5
3.
Copeland
,
J. G.
,
Copeland
,
H.
,
Gustafson
,
M.
,
Mineburg
,
N.
,
Covington
,
D.
,
Smith
,
R. G.
, and
Friedman
,
M.
,
2012
, “
Experience With More Than 100 Total Artificial Heart Implants
,”
J Thorac. Cardiovasc. Surg.
,
143
(
3
), pp.
727
734
.10.1016/j.jtcvs.2011.12.002
4.
Srtr, 2011, Optn/Srtr 2011, “
Annual Data Report: Heart
.” Available at: http://srtr.transplant.hrsa.gov/annual_reports/2011/
5.
Kirklin
,
J. K.
,
Naftel
,
D. C.
,
Kormos
,
R. L.
,
Stevenson
,
L. W.
,
Pagani
,
F. D.
,
Miller
,
M. A.
,
Baldwin
,
J. T.
, and
Young
,
J. B.
,
2012
, “
The Fourth Intermacs Annual Report: 4,000 Implants and Counting
,”
J. Heart Lung Transplant
,
31
(
2
), pp.
117
126
.10.1016/j.healun.2011.12.001
6.
Slaughter
,
M. S.
,
Rogers
,
J. G.
,
Milano
,
C. A.
,
Russell
,
S. D.
,
Conte
,
J. V.
,
Feldman
,
D.
,
Sun
,
B.
,
Tatooles
,
A. J.
,
Delgado
,
R. M.
III
,
Long
,
J. W.
,
Wozniak
,
T. C.
,
Ghumman
,
W.
,
Farrar
,
D. J.
, and
Frazier
,
O. H.
,
2009
, “
Advanced Heart Failure Treated With Continuous-Flow Left Ventricular Assist Device
,”
N. Engl. J. Med.
,
361
(
23
), pp.
2241
2251
.10.1056/NEJMoa0909938
7.
Lahpor
,
J. R.
,
2009
, “
State of the Art: Implantable Ventricular Assist Devices
,”
Curr. Opin. Organ Transplant
,
14
(
5
), pp.
554
559
.10.1097/MOT.0b013e3283303750
8.
Carrel
,
T.
,
Englberger
,
L.
,
Martinelli
,
M. V.
,
Takala
,
J.
,
Boesch
,
C.
,
Sigurdadottir
,
V.
,
Gygax
,
E.
,
Kadner
,
A.
, and
Mohacsi
,
P.
,
2012
, “
Continuous Flow Left Ventricular Assist Devices: A Valid Option for Heart Failure Patients
,”
Swiss Med. Wkly.
,
142
, pp.
w13701
.
9.
Heilmann
,
C.
,
Geisen
,
U.
,
Benk
,
C.
,
Berchtold-Herz
,
M.
,
Trummer
,
G.
,
Schlensak
,
C.
,
Zieger
,
B.
, and
Beyersdorf
,
F.
,
2009
, “
Haemolysis in Patients With Ventricular Assist Devices: Major Differences Between Systems
,”
Eur. J. Cardiothorac. Surg.
,
3636
, pp.
580
584
.10.1016/j.ejcts.2009.04.015
10.
Snyder
,
T. A.
,
Watach
,
M. J.
,
Litwak
,
K. N.
, and
Wagner
,
W. R.
,
2002
, “
Platelet Activation, Aggregation, and Life Span in Calves Implanted With Axial Flow Ventricular Assist Devices
,”
Ann. Thorac. Surg.
,
73
, pp.
1933
1938
.10.1016/S0003-4975(02)03549-X
11.
Girdhar
,
G.
,
Xenos
,
M.
,
Alemu
,
Y.
,
Chiu
,
W. C.
,
Lynch
,
B. E.
,
Jesty
,
J.
,
Einav
,
S.
,
Slepian
,
M. J.
, and
Bluestein
,
D.
,
2012
, “
Device Thrombogenicity Emulation: A Novel Method for Optimizing Mechanical Circulatory Support Device Thromboresistance
,”
PLoS ONE
,
7
(
3
), p.
e32463
.10.1371/journal.pone.0032463
12.
Mokadam
,
N. A.
,
Andrus
,
S.
, and
Ungerleider
,
A.
,
2011
, “
Thrombus Formation in a Heartmate Ii
,”
Eur. J. Cardiothorac. Surg.
,
39
(
3
), p.
414
.10.1016/j.ejcts.2010.06.015
13.
Meyer
,
A. L.
,
Kuehn
,
C.
,
Weidemann
,
J.
,
Malehsa
,
D.
,
Bara
,
C.
,
Fischer
,
S.
,
Haverich
,
A.
, and
Struber
,
M.
,
2008
, “
Thrombus Formation in a Heartmate Ii Left Ventricular Assist Device
,”
J. Thorac. Cardiovasc. Surg.
,
135
(
1
), pp.
203
204
.10.1016/j.jtcvs.2007.08.048
14.
Najib
,
M. Q.
,
Wong
,
R. K.
,
Pierce
,
C. N.
,
Devaleria
,
P. A.
, and
Chaliki
,
H. P.
,
2012
, “
An Unusual Presentation of Left Ventricular Assist Device Thrombus
,”
Eur. Heart J. Cardiovasc. Imaging
,
13
(
6
), p.
532
.10.1093/ehjci/jes011
15.
Pappalardo
,
F.
,
Scandroglio
,
A. M.
,
Potapov
,
E.
,
Stepanenko
,
A.
,
Maj
,
G.
,
Krabatsch
,
T.
,
Zangrillo
,
A.
,
Koster
,
A.
, and
Hetzer
,
R.
,
2012
, “
Argatroban Anticoagulation for Heparin Induced Thrombocytopenia in Patients With Ventricular Assist Devices
,”
Minerva Anestesiol.
,
78
(
3
), pp.
330
335
.
16.
Geisen
,
U.
,
Heilmann
,
C.
,
Beyersdorf
,
F.
,
Benk
,
C.
,
Berchtold-Herz
,
M.
,
Schlensak
,
C.
,
Budde
,
U.
, and
Zieger
,
B.
,
2008
, “
Non-Surgical Bleeding in Patients With Ventricular Assist Devices Could Be Explained by Acquired Von Willebrand Disease
,”
Eur. J. Cardiothorac. Surg.
,
33
(
4
), pp.
679
684
.10.1016/j.ejcts.2007.12.047
17.
Meyer
,
A. L.
,
Malehsa
,
D.
,
Bara
,
C.
,
Budde
,
U.
,
Slaughter
,
M. S.
,
Haverich
,
A.
, and
Strueber
,
M.
,
2010
, “
Acquired Von Willebrand Syndrome in Patients With an Axial Flow Left Ventricular Assist Device
,”
Circ. Heart Fail
,
3
(
6
), pp.
675
681
.10.1161/CIRCHEARTFAILURE.109.877597
18.
Malehsa
,
D.
,
Meyer
,
A. L.
,
Bara
,
C.
, and
Struber
,
M.
,
2009
, “
Acquired Von Willebrand Syndrome after Exchange of the Heartmate Xve to the Heartmate Ii Ventricular Assist Device
,”
Eur. J. Cardiothorac. Surg.
,
35
(
6
), pp.
1091
1093
.10.1016/j.ejcts.2009.01.042
19.
Alemu
,
Y.
,
Girdhar
,
G.
,
Xenos
,
M.
,
Sheriff
,
J.
,
Jesty
,
J.
,
Einav
,
S.
, and
Bluestein
,
D.
,
2010
, “
Design Optimization of a Mechanical Heart Valve for Reducing Valve Thrombogenicity-A Case Study With Ats Valve
,”
ASAIO J.
,
56
(
5
), pp.
389
396
.10.1097/MAT.0b013e3181e65bf9
20.
Bluestein
,
D.
,
Einav
,
S.
, and
Slepian
,
M. J.
,
2013
, “
Device Thrombogenicity Emulation: A Novel Methodology for Optimizing the Thromboresistance of Cardiovascular Devices
,”
J. Biomech.
,
46
(
2
), pp.
338
344
.10.1016/j.jbiomech.2012.11.033
21.
Xenos
,
M.
,
Girdhar
,
G.
,
Alemu
,
Y.
,
Jesty
,
J.
,
Slepian
,
M.
,
Einav
,
S.
, and
Bluestein
,
D.
,
2010
, “
Device Thrombogenicity Emulator (Dte)–Design Optimization Methodology for Cardiovascular Devices: A Study in Two Bileaflet Mhv Designs
,”
J. Biomech.
,
43
(
12
), pp.
2400
2409
.10.1016/j.jbiomech.2010.04.020
22.
Stern
,
D. R.
,
Kazam
,
J.
,
Edwards
,
P.
,
Maybaum
,
S.
,
Bello
,
R. A.
,
D'alessandro
,
D. A.
, and
Goldstein
,
D. J.
,
2010
, “
Increased Incidence of Gastrointestinal Bleeding Following Implantation of the Heartmate Ii Lvad
,”
J. Card. Surg.
,
25
(
3
), pp.
352
356
.10.1111/j.1540-8191.2010.01025.x
23.
Sponga
,
S.
,
Nalli
,
C.
,
Casonato
,
A.
, and
Charbonneau
,
E.
,
2012
, “
Severe Upper Gastrointestinal Bleeding in Heartmate Ii Induced by Acquired Von Willebrand Deficiency: Anticoagulation Management
,”
Ann. Thorac. Surg.
,
94
(
2
), pp.
e41
e43
.10.1016/j.athoracsur.2012.01.087
24.
Park
,
S. J.
,
Milano
,
C. A.
,
Tatooles
,
A. J.
,
Rogers
,
J. G.
,
Adamson
,
R. M.
,
Steidley
,
D. E.
,
Ewald
,
G. A.
,
Sundareswaran
,
K. S.
,
Farrar
,
D. J.
,
Slaughter
,
M. S.
, and
Heartmate
,
I. I. C. I.
,
2012
, “
Outcomes in Advanced Heart Failure Patients With Left Ventricular Assist Devices for Destination Therapy
,”
Circ. Heart Fail
,
5
(
2
), pp.
241
248
.10.1161/CIRCHEARTFAILURE.111.963991
25.
Bluestein
,
D.
,
Rambod
,
E.
, and
Gharib
,
M.
,
2000
, “
Vortex Shedding as a Mechanism for Free Emboli Formation in Mechanical Heart Valves
,”
ASME J. Biomech. Eng.
,
122
(
2
), pp.
125
134
.10.1115/1.429634
26.
Bludszuweit
,
C.
,
1995
, “
Three-Dimensional Numerical Prediction of Stress Loading of Blood Particles in a Centrifugal Pump
,”
Artif. Organs
,
19
(
7
), pp.
590
596
.10.1111/j.1525-1594.1995.tb02386.x
27.
Bludszuweit
,
C.
,
1995
, “
Model for a General Mechanical Blood Damage Prediction
,”
Artif. Organs
,
19
(
7
), pp.
583
589
.10.1111/j.1525-1594.1995.tb02385.x
28.
Arora
,
D.
,
Behr
,
M.
, and
Pasquali
,
M.
,
2004
, “
A Tensor-Based Measure for Estimating Blood Damage
,”
Artif. Organs
,
28
(
11
), pp.
1002
1015
.10.1111/j.1525-1594.2004.00072.x
29.
Alemu
,
Y.
, and
Bluestein
,
D.
,
2007
, “
Flow-Induced Platelet Activation and Damage Accumulation in a Mechanical Heart Valve: Numerical Studies
,”
Artif. Organs
,
31
(
9
), pp.
677
688
.10.1111/j.1525-1594.2007.00446.x
30.
Capoccia
,
M.
,
Bowles
,
C. T.
,
Sabashnikov
,
A.
, and
Simon
,
A.
,
2013
, “
Recurrent Early Thrombus Formation in Heartmate Ii Left Ventricular Assist Device
J. Investig. Med. High Impact Case Reports
,
1
(
2
), pp.
1
–3.
31.
Jesty
,
J.
, and
Bluestein
,
D.
,
1999
, “
Acetylated Prothrombin as a Substrate in the Measurement of the Procoagulant Activity of Platelets: Elimination of the Feedback Activation of Platelets by Thrombin
,”
Anal. Biochem.
,
272
(
1
), pp.
64
70
.10.1006/abio.1999.4148
You do not currently have access to this content.