Whether treated surgically or with endovascular techniques, large and giant cerebral aneurysms are particularly difficult to treat. Nevertheless, high porosity stents can be used to accomplish stent-assisted coiling and even standalone stent-based treatments that have been shown to improve the occlusion of such aneurysms. Further, stent assisted coiling can reduce the incidence of complications that sometimes result from embolic coiling (e.g., neck remnants and thromboembolism). However, in treating cerebral aneurysms at bifurcation termini, it remains unclear which configuration of high porosity stents will result in the most advantageous hemodynamic environment. The goal of this study was to compare how three different stent configurations affected fluid dynamics in a large patient-specific aneurysm model. Three common stent configurations were deployed into the model: a half-Y, a full-Y, and a crossbar configuration. Particle image velocimetry was used to examine post-treatment flow patterns and quantify root-mean-squared velocity magnitude (VRMS) within the aneurysmal sac. While each configuration did reduce VRMS within the aneurysm, the full-Y configuration resulted in the greatest reduction across all flow conditions (an average of 56% with respect to the untreated case). The experimental results agreed well with clinical follow up after treatment with the full-Y configuration; there was evidence of thrombosis within the sac from the stents alone before coil embolization was performed. A computational simulation of the full-Y configuration aligned well with the experimental and in vivo findings, indicating potential for clinically useful prediction of post-treatment hemodynamics. This study found that applying different stent configurations resulted in considerably different fluid dynamics in an anatomically accurate aneurysm model and that the full-Y configuration performed best. The study indicates that knowledge of how stent configurations will affect post-treatment hemodynamics could be important in interventional planning and demonstrates the capability for such planning based on novel computational tools.

References

References
1.
Lawton
,
M. T.
, and
Spetzler
,
R. F.
,
1995
, “
Surgical Management of Giant Intracranial Aneurysms: Experience With 171 Patients
,”
Clin. Neurosurg.
,
42
, pp.
245
266
.
2.
Whittle
,
I. R.
,
Dorsch
,
N. W.
, and
Besser
,
M.
,
1982
, “
Spontaneous Thrombosis in Giant Intracranial Aneurysms
,”
J. Neurol., Neurosurg. Psychiatry
,
45
, pp.
1040
1047
.10.1136/jnnp.45.11.1040
3.
Johnston
,
S. C.
,
Higashida
,
R. T.
,
Barrow
,
D. L.
,
Caplan
,
L. R.
,
Dion
,
J. E.
,
Hademenos
,
G.
,
Hopkins
,
L. N.
,
Molyneux
,
A.
,
Rosenwasser
,
R. H.
,
Vinuela
,
F.
, and
Wilson
,
C. B.
,
2002
, “
Recommendations for the Endovascular Treatment of Intracranial Aneurysms: A Statement for Healthcare Professionals From the Committee on Cardiovascular Imaging of the American Heart Association Council on Cardiovascular Radiology
,”
Stroke
,
33
, pp.
2536
2544
.10.1161/01.STR.0000034708.66191.7D
4.
Sluzewski
,
M.
,
Menovsky
,
T.
,
Jan van Rooij
,
W.
, and
Wijnalda
,
D.
,
2003
, “
Coiling of Very Large or Giant Cerebral Aneurysms: Long-Term Clinical and Serial Angiographic Results
,”
AJNR Am. J. Neuroradiol.
,
24
, pp.
257
262
.
5.
Raaymakers
,
T. W. M.
,
Rinkel
,
G. J. E.
,
Linburg
,
M.
, and
Algra
,
A.
,
1998
, “
Mortality and Morbidity of Surgery for Unruptured Intracranial Aneurysms: A Meta-Analysis
,”
Stroke
,
29
, pp.
1531
1538
.10.1161/01.STR.29.8.1531
6.
Arat
,
A.
,
Islak
,
C.
,
Saatci
,
I.
,
Kocer
,
N.
, and
Cekirge
,
S.
,
2002
, “
Endovascular Parent Artery Occlusion in Large-Giant or Fusiform Distal Posterior Cerebral Artery Aneurysms
,”
Neuroradiology
,
44
, pp.
700
705
.10.1007/s00234-002-0747-5
7.
International Subarachnoid Aneurysm Trial (ISAT) Collaborative Group
,
2002
, “
International Subarachnoid Aneurysm Trial (ISAT) of Neurosurgical Clipping Versus Endovascular Coiling in 2143 Patients With Ruptured Intracranial Aneurysms: A Randomized Trial
,”
Lancet
,
360
, pp.
1267
1274
.10.1016/S0140-6736(02)11314-6
8.
Vinuela
,
F.
,
Duckwiler
,
G.
, and
Mawad
,
M.
,
1997
, “
Guglielmi Detachable Coil Embolization of Acute Intracranial Aneurysm: Perioperative Anatomical and Clinical Outcome in 403 Patients
,”
J. Neurosurg.
,
86
, pp.
475
482
.10.3171/jns.1997.86.3.0475
9.
Murayama
,
Y.
,
Nien
,
Y.
,
Duckwiler
,
G.
,
Gobin
,
Y. P.
,
Jahan
,
R.
,
Frazee
,
J.
,
Martin
,
N.
, and
Viñuela
,
F.
,
1998
, “
Guglielmi Detachable Coil Emolization of Cerebral Aneurysms: 11 Years' Experience
,”
J. Neurosurg.
,
98
, pp.
959
966
.10.3171/jns.2003.98.5.0959
10.
Pumar
,
J. M.
,
Lete
,
I.
,
Pardo
,
M. I.
,
Vazquez-Herrero
,
F.
, and
Blanco
,
M.
,
2008
, “
LEO Stent Monotherapy for the Endovascular Reconstruction of Fusiform Aneurysms of the Middle Cerebral Artery
,”
AJNR Am. J. Neuroradiol.
,
29
, pp.
1775
1776
.10.3174/ajnr.A1155
11.
Lylyk
,
P.
,
Cohen
,
J. E.
,
Ceratto
,
R.
,
Ferrario
,
A.
, and
Miranda
,
C.
,
2002
, “
Endovascular Reconstruction of Intracranial Arteries by Stent Placement and Combined Techniques
,”
J. Neurosurg.
,
97
, pp.
1306
1313
.10.3171/jns.2002.97.6.1306
12.
Akpek
,
S.
,
Arat
,
A.
,
Morsi
,
H.
,
Klucznick
,
R. P.
,
Strother
,
C. M.
, and
Mawad
,
M. E.
,
2005
, “
Self-Expandable Stent-Assisted Coiling of Wide-Necked Intracranial Aneurysms: A Single-Cent Experience
,”
AJNR Am. J. Neuroradiol.
,
26
, pp.
1223
1231
.
13.
Wanke
,
I.
, and
Forsting
,
M.
,
2008
, “
Stents for Intracranial Wide-Necked Aneurysms: More Than Mechanical Protection
,”
Neuroradiology
,
50
, pp.
991
998
.10.1007/s00234-008-0460-0
14.
Cross
,
D. T.
,
Moran
,
C. J.
,
Derdeyn
,
C. P.
,
Mazumdar
,
A.
,
Rivet
,
D.
, and
Chicoine
,
M. M.
,
2005
, “
Neuroform Stent Deployment for Treatment of a Basilar Tip Aneurysm via a Posterior Communicating Artery Route
,”
AJNR Am. J. Neuroradiol.
,
26
, pp.
2578
2581
.
15.
Babiker
,
M. H.
,
Gonzalez
,
L. F.
,
Ryan
,
J.
,
Albuquerque
,
F.
,
Collins
,
D.
,
Elvikis
,
A.
, and
Frakes
,
D. H.
,
2011
, “
Influence of Stent Configuration on Cerebral Aneurysm Fluid Dynamics
,”
J. Biomech.
,
45
, pp.
440
447
.10.1016/j.jbiomech.2011.12.016
16.
Frakes
,
D.
,
Pekkan
,
K.
,
Dasi
,
L.
,
Kitajima
,
H. D.
,
de Zelicourt
,
D.
,
Leo
,
H. L.
,
Carberry
,
J.
,
Sundareswaran
,
K.
,
Simon
,
H.
, and
Yoganathan
,
A. P.
,
2008
, “
Modified Control Grid Interpolation for the Volumetric Reconstruction of Fluid Flows
,”
Exp. Fluids
,
45
, pp.
987
997
.10.1007/s00348-008-0517-1
17.
Frakes
,
D. H.
,
Conrad
,
C. P.
,
Healy
,
T. M.
,
Monaco
,
J. W.
,
Fogel
,
M.
,
Sharma
,
S.
,
Smith
,
M. J.
, and
Yoganathan
,
A. P.
,
2003
, “
Application of an Adaptive Control Grid Interpolation Technique to Morphological Vascular Reconstruction
,”
IEEE Trans. Biomed. Eng.
,
50
(
2
), pp.
197
206
.10.1109/TBME.2002.807651
18.
Ford
,
M. D.
,
Alperin
,
N.
,
Lee
,
S. H.
,
Holdsworth
,
D. W.
, and
Steinman
,
D. A.
,
2005
, “
Characterization of Volumetric Flow Rate Waveforms in the Normal Internal Carotid and Vertebral Arteries
,”
Physiol. Meas.
,
26
, pp.
477
488
.10.1088/0967-3334/26/4/013
19.
Hall
,
G.
, and
Kasper
,
E.
,
2006
, “
Comparison of Element Technologies for Modeling Stent Expansion
,”
ASME J. Biomech. Eng.
,
128
(
5
), pp.
751
756
.10.1115/1.2264382
20.
Gong
,
X. Y.
, and
Pelton
,
A.
,
2004
, “
Finite Element Analysis on Nitinol Medical Applications
,”
Proceedings of the International Conference on Shape Memory and Superelastic Technologies
,
ASM International
,
Pacific Grove, CA
, pp.
443
451
.
21.
Auricchio
,
F.
,
Taylor
,
R. L.
, and
Lubliner
,
J.
,
1997
, “
Shape-Memory Alloys: Macromodelling and Numerical Simulations of the Superelastic Behavior
,”
Comput. Methods Appl. Mech. Eng.
,
146
, pp.
281
312
.10.1016/S0045-7825(96)01232-7
22.
Babiker
,
M. H.
,
Chong
,
B. W.
,
Gonzalez
,
L. F.
, and
Frakes
,
D. H.
,
2013
, “
Simulating the Effects of Embolic Coils on Cerebral Aneurysm Fluid Dynamics Using Finite Element Modeling
,”
Proceedings of the American Society of Mechanical Engineering (ASME) Summer Bioengineering Conference
,
Sunriver, OR
.
23.
Ma
,
D.
,
Dargush
,
G.
,
Natarajan
,
S.
,
Levy
,
E. I.
,
Siddiqui
,
A. H.
, and
Meng
,
H.
,
2012
, “
Computer Modeling of Deployment and Mechanical Expansion of Neurovascular Flow Diverter in Patient-Specific Intracranial Aneurysms
,”
J. Biomech.
,
45
(
13
), pp.
2256
2263
.10.1016/j.jbiomech.2012.06.013
24.
Dunn
,
A.
,
Zaveri
,
T.
,
Keselowsky
,
B.
, and
Sawyer
,
W. G.
,
2007
, “
Macroscopic Friction Coefficient Measurements on Living Endothelial Cells
,”
Tribol. Lett.
,
27
(
2
), pp.
233
238
.10.1007/s11249-007-9230-0
25.
Vad
,
S.
,
Eskinazi
,
A.
,
Corbett
,
T.
,
McGloughlin
,
T.
, and
Vande Geest
,
J. P.
,
2010
, “
Determination of Coefficient of Friction for Self-Expanding Stent-Grafts
,”
ASME J. Biomed Eng
,
132
(
12
), p.
121007
.10.1115/1.4002798
26.
Takashima
,
K.
,
Shimomura
,
R.
,
Kitou
,
T.
,
Terada
,
H.
,
Yoshinaka
,
K.
, and
Ikeuchi
,
K.
,
2007
, “
Contact and Friction Between Catheter and Blood Vessel
,”
Tribol. Int.
,
40
(
2
), pp.
319
328
.10.1016/j.triboint.2005.10.010
27.
Roszelle
,
B. N.
,
Gonzalez
,
L. F.
,
Babiker
,
M. H.
,
Ryan
,
J.
,
Albuquerque
,
F. C.
, and
Frakes
,
D. H.
,
2013
, “
Flow Diverter Effect on Cerebral Aneurysm Hemodynamics: An in vitro Comparison of Telescoping Stents and the Pipeline
,”
Neuroradiology
,
55
, pp.
751
758
.10.1007/s00234-013-1169-2
28.
Biondi
,
A.
,
Janardhan
,
V.
,
Katz
,
J. M.
,
Salvaggio
,
K.
,
Riina
,
H. A.
, and
Gobin
,
Y. P.
,
2007
, “
Neuroform Stent-Assisted Coil Embolization of Wide-Neck Intracranial Aneurysms: Strategies in Stent Deployment and Midterm Follow-Up
,”
Neurosurgery
,
61
, pp.
460
469
.10.1227/01.NEU.0000290890.62201.A9
29.
Appanaboyina
,
S.
,
Mut
,
F.
,
Lohner
,
R.
,
Putman
,
C.
, and
Cebral
,
J.
,
2009
, “
Simulation of Intracranial Aneurysm Stenting: Techniques and Challenges
,”
Comput. Methods Appl. Mech. Eng.
,
198
, pp.
3567
3582
.10.1016/j.cma.2009.01.017
30.
Kim
,
M.
,
Taulbee
,
D. B.
,
Tremmel
,
M.
, and
Meng
,
H.
,
2008
, “
Comparison of Two Stents in Modifying Cerebral Aneurysm Hemodynamics
,”
Ann. Biomed. Eng.
,
36
(
5
), pp.
726
741
.10.1007/s10439-008-9449-4
31.
Rayz
,
V. L.
,
Boussel
,
L.
,
Lawton
,
M. T.
,
Acevedo-Bolton
,
G.
,
Ge
,
L.
,
Young
,
W. L.
,
Higashida
,
R. T.
, and
Saloner
,
D.
,
2008
, “
Numerical Modeling of the Flow in Intracranial Aneurysms: Prediction of Regions Prone to Thrombus Formation
,”
Ann. Biomed. Eng.
,
36
(
11
), pp.
1793
1804
.10.1007/s10439-008-9561-5
32.
Cebral
,
J. R.
,
Mut
,
F.
,
Weir
,
J.
, and
Putman
,
C.
,
2011
, “
Association of Hemodynamic Characteristics and Cerebral Aneurysm Rupture
,”
AJNR Am. J. Neuroradiol.
,
32
, pp.
264
270
.10.3174/ajnr.A2274
You do not currently have access to this content.