Diagnosis of Type I Chiari malformation (CMI) is difficult because the most commonly used diagnostic criterion, cerebellar tonsillar herniation (CTH) greater than 3–5 mm past the foramen magnum, has been found to have little correlation with patient symptom severity. Thus, there is a need to identify new objective measurement(s) to help quantify CMI severity. This study investigated longitudinal impedance (LI) as a parameter to assess CMI in terms of impedance to cerebrospinal fluid motion near the craniovertebral junction. LI was assessed in CMI patients (N = 15) and age-matched healthy controls (N = 8) using computational fluid dynamics based on subject-specific magnetic resonance imaging (MRI) measurements of the cervical spinal subarachnoid space. In addition, CTH was measured for each subject. Mean LI in the CMI group (551 ± 66 dyn/cm5) was significantly higher than in controls (220 ± 17 dyn/cm5, p < 0.001). Mean CTH in the CMI group was 9.0 ± 1.1 mm compared to −0.4 ± 0.5 mm in controls. Regression analysis of LI versus CTH found a weak relationship (R2 = 0.46, p < 0.001), demonstrating that CTH was not a good indicator of the impedance to CSF motion caused by cerebellar herniation. These results showed that CSF flow impedance was elevated in CMI patients and that LI provides different information than a standard CTH measurement. Further research is necessary to determine if LI can be useful in CMI patient diagnosis.

References

References
1.
Milhorat
,
T. H.
,
Chou
,
M. W.
,
Trinidad
,
E. M.
,
Kula
,
R. W.
,
Mandell
,
M.
,
Wolpert
,
C.
, and
Speer
,
M. C.
,
1999
, “
Chiari I Malformation Redefined: Clinical and Radiographic Findings for 364 Symptomatic Patients
,”
Neurosurgery
,
44
(
5
), pp.
1005
1017
.10.1097/00006123-199905000-00042
2.
Barkovich
,
A. J.
,
Wippold
,
F. J.
,
Sherman
,
J. L.
, and
Citrin
,
C. M.
,
1986
, “
Significance of Cerebellar Tonsillar Position on MR
,”
Am. J. Neuroradiol.
,
7
(
5
), pp.
795
799
.
3.
Aboulezz
,
A. O.
,
Sartor
,
K.
,
Geyer
,
C. A.
, and
Gado
,
M. H.
,
1985
, “
Position of Cerebellar Tonsils in the Normal Population and in Patients With Chiari Malformation: A Quantitative Approach With MR Imaging
,
J. Comput. Assist. Tomogr.
,
9
(
6
), pp.
1033
1036
.10.1097/00004728-198511000-00005
4.
Shaffer
,
N.
,
Martin
,
B.
, and
Loth
,
F.
,
2011
, “
Cerebrospinal Fluid Hydrodynamics in Type I Chiari Malformation
,”
Neurol. Res.
,
33
(
3
), pp.
247
260
.10.1179/016164111X12962202723805
5.
Tubbs
,
R. S.
,
Bailey
,
M.
,
Barrow
,
W. C.
,
Loukas
,
M.
,
Shoja
,
M. M.
,
Oakes
,
W. J.
,
2009
, “
Morphometric Analysis of the Craniocervical Juncture in Children with Chiari I Malformation and Concomitant Syringobulbia
,”
Childs Nerv Syst
,
25
(6), pp.
689
692
.10.1007/s00381-009-0810-1
6.
Sekula
,
R. F.
,
Jr., Jannetta
,
P. J.
,
Casey
,
K. F.
,
Marchan
,
E. M.
,
Sekula
,
L. K.
, and
Mccrady
,
C. S.
,
2005
, “
Dimensions of the Posterior Fossa in Patients Symptomatic for Chiari I Malformation but without Cerebellar Tonsillar Descent
,”
Cerebrospinal fluid research
,
2
(11) pp.
1
-
7
.10.1186/1743-8454-2-11
7.
Meadows
,
J.
,
Kraut
,
M.
,
Guarnieri
,
M.
,
Haroun
,
R. I.
, and
Carson
,
B. S.
,
2000
, “
Asymptomatic Chiari Type I Malformations Identified on Magnetic Resonance Imaging
,”
J Neurosurg
,
92
(6), pp.
920
926
.10.3171/jns.2000.92.6.0920
8.
Smith
,
B. W.
,
Strahle
,
J.
,
Bapuraj
,
J. R.
,
Muraszko
,
K. M.
,
Garton
,
H. J.
, and
Maher
,
C. O.
,
2013
, “
Distribution of Cerebellar Tonsil Position: Implications for Understanding Chiari Malformation
,”
J Neurosurg
,
119
(3), pp.
812
819
.10.3171/2011.5.PEDS1122
9.
Strahle
,
J.
,
Muraszko
,
K. M.
,
Kapurch
,
J.
,
Bapuraj
,
J. R.
,
Garton
,
H. J.
,
Maher
,
C. O.
,
2011
, “
Natural History of Chiari Malformation Type I Following Decision for Conservative Treatment
,”
J Neurosurg Pediatr
,
8
(2), pp.
214
221
.
10.
Yiallourou, T. I., Kroger, J. R., Stergiopulos, N., Maintz, D., Martin, B. A., and Bunck, A. C., 2012, “Comparison of 4d Phase-Contrast Mri Flow Measurements to Computational Fluid Dynamics Simulations of Cerebrospinal Fluid Motion in the Cervical Spine,” PLoS One, 7(12), pp. e52284.10.1371/journal.pone.0052284
11.
Zakaria, R., Kandasamy, J., Khan, Y., Jenkinson, M. D., Hall, S. R., Brodbelt, A., Pigott, T., and Mallucci, C. L., 2012, “Raised Intracranial Pressure and Hydrocephalus Following Hindbrain Decompression for Chiari I Malformation: A Case Series and Review of the Literature,” Br J Neurosurg, 26(4), pp. 476–481.
12.
Williams
,
B.
,
1981
, “
Simultaneous Cerebral and Spinal Fluid Pressure Recordings. I. Technique, Physiology, and Normal Results
,”
Acta Neurochir. (Wien)
,
58
(
3–4
), pp.
167
185
.10.1007/BF01407124
13.
Williams
,
B.
,
1981
, “
Simultaneous Cerebral and Spinal Fluid Pressure Recordings. 2. Cerebrospinal Dissociation With Lesions at the Foramen Magnum
,”
Acta Neurochir. (Wien)
,
59
(
1–2
), pp.
123
142
.10.1007/BF01411198
14.
Matsumae, M., Hirayama, A., Atsumi, H., Yatsushiro, S., and Kuroda, K., 2013, “Velocity and Pressure Gradients of Cerebrospinal Fluid Assessed with Magnetic Resonance Imaging,” J Neurosurg, Published Online August 9, 2013. pp. 1–10.
15.
Haughton, V. M., Korosec, F. R., Medow, J. E., Dolar, M. T., and Iskandar, B. J., 2003, “Peak Systolic and Diastolic Csf Velocity in the Foramen Magnum in Adult Patients with Chiari I Malformations and in Normal Control Participants,” AJNR Am J Neuroradiol, 24(2), pp. 169–176.
16.
Quigley, M. F., Iskandar, B., Quigley, M. E., Nicosia, M., and Haughton, V., 2004, “Cerebrospinal Fluid Flow in Foramen Magnum: Temporal and Spatial Patterns at Mr Imaging in Volunteers and in Patients with Chiari I Malformation,” Radiology, 232(1), pp. 229–236.10.1148/radiol.2321030666
17.
Dolar, M. T., Haughton, V. M., Iskandar, B. J., and Quigley, M., 2004, “Effect of Craniocervical Decompression on Peak Csf Velocities in Symptomatic Patients with Chiari I Malformation,” AJNR Am J Neuroradiol, 25(1), pp. 142–145.
18.
Iskandar
,
B.
,
Quigley
,
J. M.
, and
Haughton
,
V. M.
,
2004
, “
Foramen Magnum Cerebrospinal Fluid Flow Characteristics in Children With Chiari I Malformation Before and After Craniocervical Decompression
,”
J. Neurosurg.
,
101
(
2 Suppl.
), pp.
169
178
.
19.
Sakas
,
D. E.
,
Korfias
,
S. I.
,
Wayte
,
S. C.
,
Beale
,
D. J.
,
Papapetrou
,
K. P.
,
Stranjalis
,
G. S.
,
Whittaker
,
K. W.
, and
Whitwell
,
H. L.
,
2005
, “
Chiari Malformation: Csf Flow Dynamics in the Craniocervical Junction and Syrinx
,”
Acta Neurochir (Wien)
,
147
(12), pp.
1223
1233
.
20.
McGirt
,
M. J.
,
Atiba
,
A.
,
Attenello
,
F. J.
,
Wasserman
,
B. A.
,
Datoo
,
G.
,
Gathinji
,
M.
,
Carson
,
B.
,
Weingart
,
J. D.
, and
Jallo
,
G. I.
,
2008
, “
Correlation of Hindbrain CSF Flow and Outcome After Surgical Decompression for Chiari I Malformation
,”
Childs Nerv. Syst.
,
24
(
7
), pp.
833
840
.10.1007/s00381-007-0569-1
21.
Bunck
,
A. C.
,
Kroger
,
J. R.
,
Juttner
,
A.
,
Brentrup
,
A.
,
Fiedler
,
B.
,
Schaarschmidt
,
F.
,
Crelier
,
G. R.
,
Schwindt
,
W.
,
Heindel
,
W.
,
Niederstadt
,
T.
, and
Maintz
,
D.
,
2011
, “
Magnetic Resonance 4D Flow Characteristics of Cerebrospinal Fluid at the Craniocervical Junction and the Cervical Spinal Canal
,”
Eur Radiol
,
21
(8), pp.
1788
1796
.10.1007/s00330-011-2105-7
22.
Bunck
,
A. C.
,
Kroeger
,
J. R.
,
Juettner
,
A.
,
Brentrup
,
A.
,
Fiedler
,
B.
,
Crelier
,
G. R.
,
Martin
,
B. A.
,
Heindel
,
W.
,
Maintz
,
D.
,
Schwindt
,
W.
, and
Niederstadt
,
T.
,
2012
, “
Magnetic Resonance 4D Flow Analysis of Cerebrospinal Fluid Dynamics in Chiari I Malformation with and without Syringomyelia
,”
Eur Radiol
,
22
(9), pp.
1860
1870
.10.1007/s00330-012-2457-7
23.
Pujol
,
J.
,
Roig
,
C.
,
Capdevila
,
A.
,
Pou
,
A.
,
Marti-Vilalta
,
J. L.
,
Kulisevsky
,
J.
,
Escartin
,
A.
,
Zannoli
,
G.
,
1995
, “
Motion of the Cerebellar Tonsils in Chiari Type I Malformation Studied by Cine Phase-Contrast MRI
,”
Neurology
,
45
(9), pp.
1746
1753
.10.1212/WNL.45.9.1746
24.
Hofmann, E., Warmuth-Metz, M., Bendszus, M., and Solymosi, L., 2000, “Phase-Contrast MR Imaging of the Cervical CSF and Spinal Cord: Volumetric Motion Analysis in Patients with Chiari I Malformation,” AJNR Am J Neuroradiol, 21(1), pp. 151-158.
25.
Cousins
,
J.
, and
Haughton
,
V.
,
2009
, “
Motion of the Cerebellar Tonsils in the Foramen Magnum During the Cardiac Cycle
,”
Am. J. Neuroradiol.
30
(
8
), pp.
1587
1588
.10.3174/ajnr.A1507
26.
Raksin, P. B., Alperin, N., Sivaramakrishnan, A., Surapaneni, S., and Lichtor, T., 2003, “Noninvasive Intracranial Compliance and Pressure Based on Dynamic Magnetic Resonance Imaging of Blood Flow and Cerebrospinal Fluid Flow: Review of Principles, Implementation, and Other Noninvasive Approaches,” Neurosurg Focus, 14(4), pp. e4.10.3171/foc.2003.14.4.4
27.
Sivaramakrishnan, A., Alperin, N., Surapaneni, S., and Lichtor, T., 2004, “Evaluating the Effect of Decompression Surgery on Cerebrospinal Fluid Flow and Intracranial Compliance in Patients with Chiari Malformation with Magnetic Resonance Imaging Flow Studies,” Neurosurgery, 55(6), pp. 1344-1350; discussion 1350–1351.10.1227/01.NEU.0000143612.60114.2D
28.
Alperin, N., Sivaramakrishnan, A., and Lichtor, T., 2005, “Magnetic Resonance Imaging-Based Measurements of Cerebrospinal Fluid and Blood Flow as Indicators of Intracranial Compliance in Patients with Chiari Malformation,” J Neurosurg, 103(1), pp. 46–52.10.3171/jns.2005.103.1.0046
29.
Martin
,
B. A.
,
Kalata
,
W.
,
Shaffer
,
N.
,
Fischer
,
P.
,
Luciano
,
M.
and
Loth
,
F.
,
2013
, “
Hydrodynamics and Longitudinal Impedance Analysis of Cerebrospinal Fluid Dynamics at the Craniovertebral Junction in Type I Chiari Malformation
.
PLoS One
(accepted).
30.
Bloomfield
,
I. G.
,
Johnston
,
I. H.
, and
Bilston
,
L. E.
,
1998
, “
Effects of Proteins, Blood Cells and Glucose on the Viscosity of Cerebrospinal Fluid
,”
Pediatr. Neurosurg.
,
28
(
5
), pp.
246
251
.10.1159/000028659
You do not currently have access to this content.